基于規(guī)則化軌道算法和加速梯度算法的高維協(xié)方差矩陣估計(jì)的研究
[Abstract]:Covariance structure plays a very important role in high-dimensional data analysis, and the positive definiteness of covariance matrix is the core requirement of the validity of many multivariate statistical procedures. In this paper, two algorithms for covariance matrix estimation in high dimensional cases are discussed. In the first part, we mainly introduce the regular orbit of the ADMM algorithm of positive definite high dimensional covariance matrix. In the past decade, the problem of estimating high-dimensional covariance matrices has become more and more popular. Or the sparse covariance model sequence can be obtained by solving the optimal problem in the range of all regularized parameters, but little attention has been paid to it. In this part, we use the ADMM regularized orbit to quickly approximate the sparse covariance model sequence for the positive definite large dimensional covariance matrix, so as to achieve the purpose of statistical model selection. The simulation results show that our method is not only fast and easy to operate, but also can efficiently explore the sparse covariance model space. In the second part, we propose an efficient algorithm for estimating high dimensional positive definite covariance. In order to obtain simultaneously positive definite and sparse high dimensional covariance estimators, we consider estimating the high dimensional covariance matrix by using a positive definite constraint l 1-penalty minimum problem. We use the accelerated gradient algorithm to solve the optimization problem and establish the convergence rate of O (1 / (k2),) where k denotes the number of iterations. The simulation results show that our method is more competitive in computing time, convergence rate of FPR,FNR and F-norm and spectral norm.
【學(xué)位授予單位】:安徽師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O212.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 施兆民;施朝暉;蘆涵林;;核反應(yīng)截面協(xié)方差矩陣計(jì)算[J];核科學(xué)與工程;1990年03期
2 顧國(guó)華;利用重復(fù)方向觀測(cè)值求剪切應(yīng)變時(shí)的方差—協(xié)方差矩陣[J];地殼形變與地震;1987年01期
3 周兆經(jīng);程捷;陳千;;采用協(xié)方差矩陣評(píng)定測(cè)量不確定度的方法[J];中國(guó)計(jì)量學(xué)院學(xué)報(bào);1991年01期
4 周兆經(jīng);估算測(cè)量不確定度的最大熵法和協(xié)方差矩陣法[J];遙測(cè)遙控;1995年04期
5 寧忠磊;王宏琦;張正;;一種基于協(xié)方差矩陣的自動(dòng)目標(biāo)檢測(cè)方法[J];中國(guó)科學(xué)院研究生院學(xué)報(bào);2010年03期
6 呂維;王志杰;李建辰;王明洲;胡橋;;混響空時(shí)協(xié)方差矩陣的兩種計(jì)算方法比較與分析[J];魚雷技術(shù);2012年04期
7 紀(jì)宏金;一種新的多類判別方法[J];長(zhǎng)春地質(zhì)學(xué)院學(xué)報(bào);1985年03期
8 吳翩翩;;基于區(qū)域協(xié)方差矩陣的模板更新方法分析與比較[J];科技廣場(chǎng);2010年01期
9 胡玉成;;基于協(xié)方差矩陣遞推的故障診斷[J];杭州電子科技大學(xué)學(xué)報(bào);2010年06期
10 灻昭a(bǔ)v;;關(guān)于N≡3(mod 4)的最優(yōu)秤重,
本文編號(hào):2391948
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2391948.html