《方程的理解與修正》研究
[Abstract]:The most direct purpose of early algebra is to solve algebraic equations. In this paper, the main content of this paper is "understanding and revising the equation" in the fourth part of "Analytical technique" (TheAnalytic Art) by Francois Vieta,1540-1603 (Two Treatises on the Understanding and Amendment of Equations,1615). To explore its contribution to the theory of algebraic equations. In the previous "understanding of equations" (Firstreatise:On Understanding Equations), Veda uses symbolic analysis method, binomial expansion method and equation comparison method to analyze the structure of the equation. In the latter part of "Correction of equations" (Seconnd Treatse:On the Amendment of Equations), Veda proposes the corresponding equation transformation rules for all kinds of equations which can not be solved numerically or which are very difficult to solve numerically. It can be transformed into a new equation that can be solved numerically or easily. In both the preceding and the following chapters, Veda presents his research results through specific theorems or propositions, but only gives explanations or explanations for some of them. The purpose of this paper is to analyze the theorems or propositions in these two chapters in accordance with the principle of "restoration of ancient evidence". The main work is as follows: first, when exploring the basic principles of the Vedalier equation, it is found that he emphasizes the relation between the equation and the proportion. So in this paper, when we read the previous book "understanding of equation", we use the idea of proportion to restore the theorems and propositions that Veda did not explain or explain in symbolic analysis and equation comparison, and give its more reasonable source analysis and proof. It is clear that the essence of Veda's thought can be summed up as identity deformation. Secondly, it analyzes the mathematical ideas and methods behind the transformation of all kinds of equations provided by Veda in the latter part of "Correction of the equation", and combines the symbolic analysis method in the previous chapter. In this paper, the binomial expansion method and the equation comparison method are used to explore the source of five kinds of commonly used equation transformations, and the partial theorems of Vedar's equation transformation are restored, and one of the wrong propositions is pointed out.
【學(xué)位授予單位】:西北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O151.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃鴻義;;利用韋達(dá)定理解題[J];中學(xué)教學(xué)參考;2009年05期
2 肖運(yùn)平;;巧用韋達(dá)定理解數(shù)學(xué)題[J];中國(guó)電力教育;2010年S1期
3 覃克星;扎根山區(qū)測(cè)風(fēng)云 忠骨獻(xiàn)給黨與民——悼念韋達(dá)華同志[J];廣西氣象;1983年02期
4 王軍;;如何用韋達(dá)定理求解數(shù)學(xué)問(wèn)題[J];現(xiàn)代教育;2011年Z1期
5 孫宏安;韋達(dá)與符號(hào)代數(shù)[J];數(shù)學(xué)通報(bào);1996年11期
6 趙適紅;;韋達(dá)定理的應(yīng)用初探[J];太原城市職業(yè)技術(shù)學(xué)院學(xué)報(bào);2008年07期
7 王瑞琦;利用韋達(dá)定理解方程(組)[J];開封教育學(xué)院學(xué)報(bào);1999年04期
8 潘玉清;;韋達(dá)定理的巧用[J];考試周刊;2009年32期
9 施慧林;;巧用韋達(dá)定理和判別式解題[J];中國(guó)科技信息;2010年22期
10 錢麗;;我這樣教“韋達(dá)定理”[J];數(shù)學(xué)學(xué)習(xí)與研究(教研版);2008年10期
相關(guān)會(huì)議論文 前2條
1 李美功;;試談韋達(dá)定理的應(yīng)用[A];中華教育理論與實(shí)踐科研論文成果選編(第3卷)[C];2010年
2 李恒東;;巧用幾何性質(zhì) 簡(jiǎn)化代數(shù)運(yùn)算[A];中華教育理論與實(shí)踐科研論文成果選編(第3卷)[C];2010年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)駐敘利亞記者 焦翔;戰(zhàn)爭(zhēng)中,,已無(wú)世外桃源[N];人民日?qǐng)?bào);2013年
相關(guān)碩士學(xué)位論文 前2條
1 范云亮;韋達(dá)高次方程數(shù)值解研究[D];西北大學(xué);2016年
2 王雪茹;韋達(dá)對(duì)倍角三角形的研究[D];西北大學(xué);2015年
本文編號(hào):2373543
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2373543.html