天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

《方程的理解與修正》研究

發(fā)布時(shí)間:2018-12-12 00:37
【摘要】:早期代數(shù)學(xué)最直接的目的是求解代數(shù)方程。本文以韋達(dá)(Francois Vieta,1540-1603)的著作合集《分析術(shù)》(TheAnalytic Art)中第四部分《方程的理解與修正》(Two Treatises on the Understanding and Amendment of Equations,1615)為主要研究?jī)?nèi)容,探究其對(duì)代數(shù)方程理論所做的貢獻(xiàn)。在前篇《方程的理解》(Firstreatise:On Understanding Equations)中,韋達(dá)分別運(yùn)用符號(hào)分析法、二項(xiàng)式展開法和方程比較法分析了方程的結(jié)構(gòu);在后篇《方程的修正》(Seconnd Treatse:On the Amendment of Equations)中,韋達(dá)針對(duì)各類無(wú)法進(jìn)行數(shù)值求解或者數(shù)值求解十分困難的方程提出了相應(yīng)的方程變換法則,使其可以變換為能夠或者容易進(jìn)行數(shù)值求解的新方程。韋達(dá)在前后兩篇中都是通過(guò)具體的定理或命題展示自己的研究結(jié)果,但僅對(duì)其中一部分給出了解釋或說(shuō)明。本文目的在于遵循“古證復(fù)原”的原則分析這兩篇中的定理或命題,主要工作如下:第一,在探究韋達(dá)列方程的基本原則時(shí),發(fā)現(xiàn)他強(qiáng)調(diào)方程與比例之間的聯(lián)系,所以本文研讀前篇《方程的理解》時(shí),利用比例的思想復(fù)原了韋達(dá)在符號(hào)分析法與方程比較法中沒(méi)有解釋或說(shuō)明的定理與命題,給出其較為合理的來(lái)源分析與證明,從而明確地得出,韋達(dá)思想的實(shí)質(zhì)可歸結(jié)為恒等式變形。第二,分析后篇《方程的修正》中韋達(dá)提供的各類方程變換背后所蘊(yùn)含的數(shù)學(xué)思想和方法,結(jié)合前篇中的符號(hào)分析法、二項(xiàng)式展開法和方程比較法對(duì)五種常用的方程變換進(jìn)行探源,復(fù)原了韋達(dá)關(guān)于方程變換的部分定理,并指出其中的一條錯(cuò)誤命題。
[Abstract]:The most direct purpose of early algebra is to solve algebraic equations. In this paper, the main content of this paper is "understanding and revising the equation" in the fourth part of "Analytical technique" (TheAnalytic Art) by Francois Vieta,1540-1603 (Two Treatises on the Understanding and Amendment of Equations,1615). To explore its contribution to the theory of algebraic equations. In the previous "understanding of equations" (Firstreatise:On Understanding Equations), Veda uses symbolic analysis method, binomial expansion method and equation comparison method to analyze the structure of the equation. In the latter part of "Correction of equations" (Seconnd Treatse:On the Amendment of Equations), Veda proposes the corresponding equation transformation rules for all kinds of equations which can not be solved numerically or which are very difficult to solve numerically. It can be transformed into a new equation that can be solved numerically or easily. In both the preceding and the following chapters, Veda presents his research results through specific theorems or propositions, but only gives explanations or explanations for some of them. The purpose of this paper is to analyze the theorems or propositions in these two chapters in accordance with the principle of "restoration of ancient evidence". The main work is as follows: first, when exploring the basic principles of the Vedalier equation, it is found that he emphasizes the relation between the equation and the proportion. So in this paper, when we read the previous book "understanding of equation", we use the idea of proportion to restore the theorems and propositions that Veda did not explain or explain in symbolic analysis and equation comparison, and give its more reasonable source analysis and proof. It is clear that the essence of Veda's thought can be summed up as identity deformation. Secondly, it analyzes the mathematical ideas and methods behind the transformation of all kinds of equations provided by Veda in the latter part of "Correction of the equation", and combines the symbolic analysis method in the previous chapter. In this paper, the binomial expansion method and the equation comparison method are used to explore the source of five kinds of commonly used equation transformations, and the partial theorems of Vedar's equation transformation are restored, and one of the wrong propositions is pointed out.
【學(xué)位授予單位】:西北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O151.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 黃鴻義;;利用韋達(dá)定理解題[J];中學(xué)教學(xué)參考;2009年05期

2 肖運(yùn)平;;巧用韋達(dá)定理解數(shù)學(xué)題[J];中國(guó)電力教育;2010年S1期

3 覃克星;扎根山區(qū)測(cè)風(fēng)云 忠骨獻(xiàn)給黨與民——悼念韋達(dá)華同志[J];廣西氣象;1983年02期

4 王軍;;如何用韋達(dá)定理求解數(shù)學(xué)問(wèn)題[J];現(xiàn)代教育;2011年Z1期

5 孫宏安;韋達(dá)與符號(hào)代數(shù)[J];數(shù)學(xué)通報(bào);1996年11期

6 趙適紅;;韋達(dá)定理的應(yīng)用初探[J];太原城市職業(yè)技術(shù)學(xué)院學(xué)報(bào);2008年07期

7 王瑞琦;利用韋達(dá)定理解方程(組)[J];開封教育學(xué)院學(xué)報(bào);1999年04期

8 潘玉清;;韋達(dá)定理的巧用[J];考試周刊;2009年32期

9 施慧林;;巧用韋達(dá)定理和判別式解題[J];中國(guó)科技信息;2010年22期

10 錢麗;;我這樣教“韋達(dá)定理”[J];數(shù)學(xué)學(xué)習(xí)與研究(教研版);2008年10期

相關(guān)會(huì)議論文 前2條

1 李美功;;試談韋達(dá)定理的應(yīng)用[A];中華教育理論與實(shí)踐科研論文成果選編(第3卷)[C];2010年

2 李恒東;;巧用幾何性質(zhì) 簡(jiǎn)化代數(shù)運(yùn)算[A];中華教育理論與實(shí)踐科研論文成果選編(第3卷)[C];2010年

相關(guān)重要報(bào)紙文章 前1條

1 本報(bào)駐敘利亞記者 焦翔;戰(zhàn)爭(zhēng)中,,已無(wú)世外桃源[N];人民日?qǐng)?bào);2013年

相關(guān)碩士學(xué)位論文 前2條

1 范云亮;韋達(dá)高次方程數(shù)值解研究[D];西北大學(xué);2016年

2 王雪茹;韋達(dá)對(duì)倍角三角形的研究[D];西北大學(xué);2015年



本文編號(hào):2373543

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2373543.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f1505***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com