極大值方程的數(shù)值算法及其應(yīng)用研究
發(fā)布時間:2018-11-21 14:18
【摘要】:極大值方程問題是非光滑方程問題中一類很重要的問題,經(jīng)常被用于求解非線性互補、變分不等式和工程力學(xué)等問題,并廣泛應(yīng)用于圖像存儲、隨機均衡及優(yōu)化控制等問題的研究。本文主要對極大值方程問題的求解算法及其應(yīng)用進(jìn)行了研究。第一章對極大值方程問題的相關(guān)知識做了簡單介紹,其中包括問題的來源、發(fā)展情況等,并介紹了極大值方程的應(yīng)用。第二章給出了求解極大值方程問題的一種參數(shù)組合牛頓法,此算法主要借助于一種新的微分形式,在一般的假設(shè)條件下,證明了算法的局部超線性收斂結(jié)果,最后給出了相關(guān)的數(shù)值實驗表明了算法的有效性。第三章給出了求解極大值方程問題的改進(jìn)參數(shù)組合牛頓法,克服了在算法中要求矩陣kV非奇異的限制,證明了算法的局部超線性收斂性,并給出了相關(guān)的數(shù)值實驗。第四章對一類廣義互補問題進(jìn)行了轉(zhuǎn)化,將其轉(zhuǎn)化為極大值方程問題,并且利用給出的參數(shù)組合牛頓法對其進(jìn)行了求解。
[Abstract]:Maxima equation problem is a very important problem in non-smooth equation problem. It is often used to solve nonlinear complementarity, variational inequality and engineering mechanics, and is widely used in image storage. Study on stochastic equilibrium and optimal control. In this paper, the algorithm and its application of the problem of maximum equation are studied. In the first chapter, we briefly introduce the knowledge about the problem of the maximum equation, including the origin and development of the problem, and introduce the application of the maximum equation. In the second chapter, a parameter combination Newton method is given to solve the maximum value equation problem. This method is mainly based on a new differential form. Under general assumptions, the local superlinear convergence results of the algorithm are proved. Finally, relevant numerical experiments are given to show the effectiveness of the algorithm. In chapter 3, an improved parameter combination Newton method for solving the problem of maximum equation is given, which overcomes the limitation of matrix kV nonsingularity in the algorithm, proves the local superlinear convergence of the algorithm, and gives the relevant numerical experiments. In chapter 4, a class of generalized complementarity problem is transformed into a maximum value equation problem, and it is solved by using the given parameter combination Newton method.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O241.8
本文編號:2347220
[Abstract]:Maxima equation problem is a very important problem in non-smooth equation problem. It is often used to solve nonlinear complementarity, variational inequality and engineering mechanics, and is widely used in image storage. Study on stochastic equilibrium and optimal control. In this paper, the algorithm and its application of the problem of maximum equation are studied. In the first chapter, we briefly introduce the knowledge about the problem of the maximum equation, including the origin and development of the problem, and introduce the application of the maximum equation. In the second chapter, a parameter combination Newton method is given to solve the maximum value equation problem. This method is mainly based on a new differential form. Under general assumptions, the local superlinear convergence results of the algorithm are proved. Finally, relevant numerical experiments are given to show the effectiveness of the algorithm. In chapter 3, an improved parameter combination Newton method for solving the problem of maximum equation is given, which overcomes the limitation of matrix kV nonsingularity in the algorithm, proves the local superlinear convergence of the algorithm, and gives the relevant numerical experiments. In chapter 4, a class of generalized complementarity problem is transformed into a maximum value equation problem, and it is solved by using the given parameter combination Newton method.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O241.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 朱紅焰;岳靖;鞏成艷;;非線性互補問題的光滑算法[J];長春理工大學(xué)學(xué)報(自然科學(xué)版);2016年05期
2 宋林森;高巖;;極大值函數(shù)Clarke廣義Jacobi計算的新算法[J];上海理工大學(xué)學(xué)報;2016年05期
3 朱紅焰;鞏成艷;岳靖;;非線性互補問題的光滑牛頓算法[J];阜陽師范學(xué)院學(xué)報(自然科學(xué)版);2016年03期
4 周光輝;張從軍;張成虎;王月虎;;非線性互補問題的兩種數(shù)值解法[J];數(shù)學(xué)雜志;2016年04期
5 許小芳;馬昌鳳;;基于一個新的NCP函數(shù)的光滑牛頓法求解非線性互補問題[J];數(shù)學(xué)雜志;2011年04期
6 杜守強;高巖;;求解垂直互補問題的參數(shù)牛頓法(英文)[J];運籌學(xué)學(xué)報;2009年01期
7 ;Nonsmooth Equations of K-T Systems for a Constrained Minimax Problem[J];Journal of Systems Engineering and Electronics;2003年02期
8 常永奎,劉三陽;非線性互補問題的一種不可行非內(nèi)點連續(xù)算法[J];數(shù)學(xué)研究;2003年01期
,本文編號:2347220
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2347220.html
最近更新
教材專著