量子Lyapunov控制的理論研究及應(yīng)用
[Abstract]:As a new interdisciplinary subject, quantum cybernetics is an indispensable basic theory to realize quantum computer and quantum communication. Its development will promote physics, chemistry, biology and other natural disciplines, and promote the progress of quantum technology. Quantum control mainly covers a series of basic issues, such as the manipulation and preparation of quantum states, the construction of non-decoherence space and so on. The research progress of quantum control will also help to enhance the status of quantum information in future communications. In this paper, we focus on the applications of Lyapunov control in different quantum systems, including spin 1 / 2 chain, spin fermion free 1 dimensional Kitaev chain, 1 dimensional double potential well optical lattice, and 1 D double potential well optical lattice. A hybrid system of topological superconducting wires and quantum dots and 1 D Fermi gas trapped in optical lattices. These applications will promote quantum information processing in the future. Our research begins with chapter three. In the first and second chapters, the background of the research work is described, and some basic theorems, such as Lyapunov's theorem of urgency and invariant set theorem, are given, which provide the theoretical basis for the next research work. In addition, several design methods of Lyapunov function are briefly introduced. In chapter 3, the high fidelity transfer of quantum states in the spin 1 / 2 chain is realized by adjusting the coupling strength between the boundary spin and the nearest neighbor spin or the Larmor frequency of the boundary spin. Different from the traditional quantum state transfer method, this method has the following advantages: the final state of the system is steady-state, the transition time of the final state of the system does not need to be controlled accurately, and it is robust to the disturbance of the control field. The method can also be applied to the quantum state transfer of spin chains with different periodic structures. In chapter 4, in the quantum system described by the quadratic Hamiltonian, the quasi-particle is driven to the topological mode (topological modes). In a Fermi system, a one-dimensional Kitaev chain without spin fermions is taken as an example to show how to obtain Majorana zero modules. In Bose systems, take the Su-Schrieffer-Heeger model as an example to show how to drive the system to the boundary mode (edge mode). Finally, the possibility of replacing time-dependent control field waveform with square wave pulse is discussed. In chapter 5, by means of the Majorana fermion in the topological superconducting wire, four different schemes are used to realize the long-range entanglement of two quantum dots. That is, the teleportation scheme; the cross Andreev reflection scheme; the internal point spin flip scheme; the transcendental internal point spin flip scheme. We use Lyapunov control and adiabatic process to form long-range entanglement respectively. Compared with adiabatic process, the advantage of Lyapunov control lies in flexible control of Hamiltonian and shortening of control time. In the sixth chapter, we study how to realize the boundary state (edge state). In the Aubry-Andre-Harper model. The advantage of this scheme is that the boundary state can be realized only by adjusting the energy of the boundary lattice. Then we use the deformed Lyapunov function to design the control field to realize the boundary-boundary entanglement, that is, the maximal entangled state of two boundary states. This method provides a new effective method for boundary state manipulation. The last chapter gives the summary and prospect of this paper.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O413;O231
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 萬陵德;余洪偉;程寶蓮;魯公儒;;分立對稱性與三代費(fèi)米子的統(tǒng)一(Ⅱ)[J];新鄉(xiāng)師范學(xué)院學(xué)報(bào)(自然科學(xué)版);1984年01期
2 江向東;;SU(6)大統(tǒng)一模型[J];高能物理與核物理;1984年03期
3 曾遠(yuǎn)文;費(fèi)米子算符的一些關(guān)系式[J];大學(xué)物理;1984年09期
4 鄭波;;可解的1+1維格點(diǎn)U(1)規(guī)范模型與費(fèi)米子加倍問題[J];高能物理與核物理;1990年04期
5 羅向前;陳啟洲;;低維規(guī)范理論中的費(fèi)米子真空凝聚[J];高能物理與核物理;1992年08期
6 許伯威;費(fèi)米子數(shù)的時(shí)空性質(zhì)[J];蘭州大學(xué)學(xué)報(bào);1978年03期
7 許伯威;;費(fèi)米子數(shù)的時(shí)空性質(zhì)[J];高能物理與核物理;1979年01期
8 王維璽;;E_6的大統(tǒng)一模型[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);1982年01期
9 孫洪洲;韓其智;;玻色子費(fèi)米子體系波函數(shù)的分類[J];高能物理與核物理;1982年03期
10 馬中騏;東方曉;杜東生;薛丕友;;一個(gè)可能的SU(9)大統(tǒng)一模型[J];高能物理與核物理;1982年03期
相關(guān)會議論文 前1條
1 甘姝;汪凱戈;;雙費(fèi)米子的分束器干涉[A];第十三屆全國量子光學(xué)學(xué)術(shù)報(bào)告會論文摘要集[C];2008年
相關(guān)重要報(bào)紙文章 前4條
1 記者 常麗君;美科學(xué)家造出全新量子物質(zhì)形態(tài)[N];科技日報(bào);2012年
2 周清春;第六態(tài):敲開物質(zhì)世界的又一扇大門[N];科技日報(bào);2005年
3 張孟軍;科學(xué)家制出玻色-愛因斯坦凝聚態(tài)物質(zhì)[N];科技日報(bào);2003年
4 記者 毛磊;2003年度最重要物理學(xué)新聞[N];新華每日電訊;2003年
相關(guān)博士學(xué)位論文 前6條
1 朱小宇;一維系統(tǒng)中的Majorana費(fèi)米子和分?jǐn)?shù)費(fèi)米子[D];南京大學(xué);2016年
2 施志成;量子Lyapunov控制的理論研究及應(yīng)用[D];大連理工大學(xué);2016年
3 李偉;狄拉克費(fèi)米子體系中的手征相變[D];中國科學(xué)技術(shù)大學(xué);2010年
4 王寧;基于Majorana費(fèi)米子的量子點(diǎn)體系中量子輸運(yùn)和自旋性質(zhì)的研究[D];河北師范大學(xué);2015年
5 王景榮;狄拉克費(fèi)米子體系中的量子相變和非費(fèi)米液體行為[D];中國科學(xué)技術(shù)大學(xué);2014年
6 李海濤;厚膜上的費(fèi)米子共振態(tài)[D];蘭州大學(xué);2011年
相關(guān)碩士學(xué)位論文 前6條
1 鄭翌潔;拓?fù)浣^緣體臺階結(jié)構(gòu)以及Majorana費(fèi)米子的輸運(yùn)特性[D];河北師范大學(xué);2016年
2 苗子京;Majorana邊態(tài)導(dǎo)致的交叉Andreev反射研究[D];河北師范大學(xué);2016年
3 崔會麗;基于Majorana費(fèi)米子的熱電性質(zhì)[D];河北師范大學(xué);2014年
4 徐增光;膜世界上費(fèi)米子的新局域化機(jī)制及f(R)膜世界引力共振態(tài)的研究[D];蘭州大學(xué);2014年
5 寇朝帥;幺正費(fèi)米氣體熱力學(xué)量的低溫與高溫展開[D];華中師范大學(xué);2014年
6 毛普健;5維黑洞背景下費(fèi)米子的霍金輻射[D];蘭州大學(xué);2012年
,本文編號:2335954
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2335954.html