基于年齡結(jié)構(gòu)隨機(jī)種群系統(tǒng)的漸近行為
[Abstract]:Stochastic differential equation theory has been widely used in many fields such as physics, biological mathematics, economic mathematics, automatic control, communication theory and so on. In real life, there are all kinds of random interference in any system, and the application of the system depends on the dynamic behavior. In this paper, the dynamical behavior of stochastic differential systems with Brown motion, fractional Brown motion, Poisson process and fuzzy disturbance are considered respectively. The main research contents are as follows: (1) by using Ito formula and Bellman-Gronwall-type estimation, the mean-square escape of fractional Brown motion time-varying random population harvesting system is studied under certain conditions. By using the compensation backward Euler method and the step backward Euler method under the limit of the Hurst parameter H, the mean square escape of the numerical method is proved, and the escape characteristic of the original system is preserved. Finally, the results are verified by numerical examples. (2) by using Ito formula, Cauchy-Schwarz inequality and some theories of stochastic analysis, the mean square stability of stochastic time-delay systems with jump age is given. Furthermore, the mean square stability of the numerical method is proved by using the compensated stochastic 胃 method under the limit of step size t and parameter 胃. Finally, numerical examples combined with MATLAB software are used to verify the correctness of the results. (3) by establishing appropriate Lyapunov-Krasovskii functional, using Ito formula, Bellman-Gronwall-type estimation and fuzzy set theory, The mean square escape condition of age-dependent fuzzy stochastic population system under environmental pollution is given. Finally, the validity and validity of the results are verified by a numerical example and MATLAB software.
【學(xué)位授予單位】:北方民族大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 李強(qiáng);張啟敏;;廣義Khasminskii-type條件下與年齡相關(guān)隨機(jī)時(shí)滯種群系統(tǒng)的數(shù)值解[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2016年18期
2 楊洪福;張啟敏;申芳芳;李西寧;;與年齡相關(guān)的模糊隨機(jī)種群擴(kuò)散系統(tǒng)的數(shù)值解[J];模糊系統(tǒng)與數(shù)學(xué);2015年01期
3 郭建敏;田海燕;;帶控制項(xiàng)的模糊微分方程的穩(wěn)定性[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2013年13期
4 蔡白光;甘四清;;積分微分方程多步Runge-Kutta方法的散逸性[J];西南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年05期
5 杜慶輝;張啟敏;;帶馬爾可夫調(diào)制隨機(jī)競(jìng)爭(zhēng)種群系統(tǒng)數(shù)值解的指數(shù)穩(wěn)定性[J];華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
6 祁銳;何漢林;;非線性延遲積分微分方程單支方法的散逸性[J];數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用;2011年02期
7 李朝霞;張啟敏;;一類隨機(jī)時(shí)變種群擴(kuò)散系統(tǒng)解的存在性、惟一性[J];山東大學(xué)學(xué)報(bào)(理學(xué)版);2007年09期
8 李榮華;戴永紅;孟紅兵;;與年齡相關(guān)的隨機(jī)時(shí)滯種群方程的指數(shù)穩(wěn)定性[J];數(shù)學(xué)年刊A輯(中文版);2006年01期
,本文編號(hào):2318391
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2318391.html