天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

基于年齡結(jié)構(gòu)隨機(jī)種群系統(tǒng)的漸近行為

發(fā)布時(shí)間:2018-11-08 11:37
【摘要】:隨機(jī)微分方程理論現(xiàn)已被廣泛地應(yīng)用于物理學(xué)、生物數(shù)學(xué)、經(jīng)濟(jì)數(shù)學(xué)、自動(dòng)控制、通信理論等眾多領(lǐng)域.在現(xiàn)實(shí)生活中任何系統(tǒng),都存在著各種隨機(jī)因素的干擾,并且系統(tǒng)的應(yīng)用都依賴于動(dòng)力學(xué)行為.本文分別考慮了在Brown運(yùn)動(dòng)、分?jǐn)?shù)Brown運(yùn)動(dòng)、Poisson過程和模糊產(chǎn)生擾動(dòng)情況下的隨機(jī)微分系統(tǒng)的動(dòng)力學(xué)行為-散逸性和穩(wěn)定性.其研究內(nèi)容主要有以下幾個(gè)方面:(1)利用Ito公式和Bellman-Gronwall-type估計(jì),在一定的條件下研究了分?jǐn)?shù)Brown運(yùn)動(dòng)時(shí)變隨機(jī)種群收獲系統(tǒng)的均方散逸性.并分別利用補(bǔ)償?shù)瓜駿uler方法和分步倒向Euler方法在Hurst參數(shù)H的限制下,證明了該系統(tǒng)數(shù)值方法的均方散逸性,保留了原系統(tǒng)的散逸特征.最后通過數(shù)值算例對(duì)所給出的結(jié)論進(jìn)行了驗(yàn)證.(2)利用Ito公式、Cauchy-Schwarz不等式和隨機(jī)分析的一些理論,給出了帶跳年齡相關(guān)隨機(jī)時(shí)滯種群系統(tǒng)的均方穩(wěn)定性.再利用補(bǔ)償隨機(jī)θ方法在步長△t和參數(shù)θ限制下,證明了此系統(tǒng)數(shù)值方法的均方穩(wěn)定性.最后通過數(shù)值例子結(jié)合MATLAB軟件驗(yàn)證了結(jié)果的正確性.(3)通過建立恰當(dāng)?shù)腖yapunov-Krasovskii泛函,利用Ito公式、Bellman-Gronwall-type估計(jì)和模糊集理論,給出了在環(huán)境污染下年齡相關(guān)模糊隨機(jī)種群系統(tǒng)均方散逸性條件,最后通過數(shù)值例子結(jié)合MATLAB軟件驗(yàn)證了結(jié)果的正確性和有效性.
[Abstract]:Stochastic differential equation theory has been widely used in many fields such as physics, biological mathematics, economic mathematics, automatic control, communication theory and so on. In real life, there are all kinds of random interference in any system, and the application of the system depends on the dynamic behavior. In this paper, the dynamical behavior of stochastic differential systems with Brown motion, fractional Brown motion, Poisson process and fuzzy disturbance are considered respectively. The main research contents are as follows: (1) by using Ito formula and Bellman-Gronwall-type estimation, the mean-square escape of fractional Brown motion time-varying random population harvesting system is studied under certain conditions. By using the compensation backward Euler method and the step backward Euler method under the limit of the Hurst parameter H, the mean square escape of the numerical method is proved, and the escape characteristic of the original system is preserved. Finally, the results are verified by numerical examples. (2) by using Ito formula, Cauchy-Schwarz inequality and some theories of stochastic analysis, the mean square stability of stochastic time-delay systems with jump age is given. Furthermore, the mean square stability of the numerical method is proved by using the compensated stochastic 胃 method under the limit of step size t and parameter 胃. Finally, numerical examples combined with MATLAB software are used to verify the correctness of the results. (3) by establishing appropriate Lyapunov-Krasovskii functional, using Ito formula, Bellman-Gronwall-type estimation and fuzzy set theory, The mean square escape condition of age-dependent fuzzy stochastic population system under environmental pollution is given. Finally, the validity and validity of the results are verified by a numerical example and MATLAB software.
【學(xué)位授予單位】:北方民族大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O175

【參考文獻(xiàn)】

相關(guān)期刊論文 前8條

1 李強(qiáng);張啟敏;;廣義Khasminskii-type條件下與年齡相關(guān)隨機(jī)時(shí)滯種群系統(tǒng)的數(shù)值解[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2016年18期

2 楊洪福;張啟敏;申芳芳;李西寧;;與年齡相關(guān)的模糊隨機(jī)種群擴(kuò)散系統(tǒng)的數(shù)值解[J];模糊系統(tǒng)與數(shù)學(xué);2015年01期

3 郭建敏;田海燕;;帶控制項(xiàng)的模糊微分方程的穩(wěn)定性[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2013年13期

4 蔡白光;甘四清;;積分微分方程多步Runge-Kutta方法的散逸性[J];西南大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年05期

5 杜慶輝;張啟敏;;帶馬爾可夫調(diào)制隨機(jī)競(jìng)爭(zhēng)種群系統(tǒng)數(shù)值解的指數(shù)穩(wěn)定性[J];華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期

6 祁銳;何漢林;;非線性延遲積分微分方程單支方法的散逸性[J];數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用;2011年02期

7 李朝霞;張啟敏;;一類隨機(jī)時(shí)變種群擴(kuò)散系統(tǒng)解的存在性、惟一性[J];山東大學(xué)學(xué)報(bào)(理學(xué)版);2007年09期

8 李榮華;戴永紅;孟紅兵;;與年齡相關(guān)的隨機(jī)時(shí)滯種群方程的指數(shù)穩(wěn)定性[J];數(shù)學(xué)年刊A輯(中文版);2006年01期

,

本文編號(hào):2318391

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2318391.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0c990***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com