帶有陡峭位勢(shì)和擾動(dòng)項(xiàng)的Choquard方程正解的多重性
發(fā)布時(shí)間:2018-09-11 10:36
【摘要】:本文主要研究帶有陡峭位勢(shì)和擾動(dòng)項(xiàng)的Choquard方程其中 N ∈ N,N ≥ 3,α ∈(0,N),p ∈((N + α)/N,(N + α)/(N-2),)Vμ=1 +μg(x(,μ ≥ 0,λ ≥ 0.Kα(x)是Riesz位勢(shì).函數(shù)f,g分別滿足下述條件當(dāng)Vμ = 1 +μg(x),μ0,λ = 1時(shí),利用Ekeland變分原理和山路引理知道方程M至少有兩個(gè)正解.當(dāng)Vμ = 1 +μg(x),μ = 0,λ0時(shí),利用臨界點(diǎn)理論,Ekeland變分原理,山路引理和局部(PS)條件知道方程(M)至少有兩個(gè)正解.主要結(jié)論如下(1)當(dāng) λ = 1,= 1 + μg(x),μ0 時(shí),有定理 1 假設(shè) N ≥ 3,α(0,N),p ∈((N + α)/N,(N + α)/(N-2)),Vμ(x)=1 +μg(x),函數(shù)f,g滿足(f1)-(f2),(g1)-(g3).存在常數(shù)μ*,δ,當(dāng)μμ*0,|f|2δ時(shí),方程(M)存在兩個(gè)正解.(2)當(dāng) λ0,Vμ = 1 + μg(x),μ = 0 時(shí),有定理 2 假設(shè) N ≥ 3,α(0,N),p ∈((N + α)/N,(N + α)/(N-2)),f 滿足(f1)-(f2).那么存在λ*0,使得對(duì)任意λ ∈(0,λ*),方程(M)至少有兩個(gè)正解.
[Abstract]:In this paper, we study the Choquard equation with steep potential and perturbed term, where N 鈭,
本文編號(hào):2236450
[Abstract]:In this paper, we study the Choquard equation with steep potential and perturbed term, where N 鈭,
本文編號(hào):2236450
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2236450.html
最近更新
教材專著