Darboux變換在孤子方程中的應用
發(fā)布時間:2018-09-10 10:16
【摘要】:Darboux變換是一種研究孤子方程精確解較為直接和有效的方法。它建立了同一個方程的兩個不同解之間的聯(lián)系,從而可以從方程的一個平凡解得到許多非平凡解。本文主要研究了兩個與3×3矩陣譜問題相聯(lián)系的孤子方程的Darboux變換及其應用。首先,介紹了孤立子及Darboux變換的發(fā)展背景和基本理論。其次,通過適當引入譜問題的規(guī)范變換,構造出了廣義TD方程的一階及N階Darboux變換。選取平凡的初始解,應用一階Darboux變換,得到廣義TD方程的兩個非平凡的精確解。最后,討論了一個微分-積分方程的Darboux變換及其精確解。
[Abstract]:Darboux transform is a direct and effective method to study the exact solutions of soliton equations. It establishes the relation between two different solutions of the same equation, and thus obtains many nontrivial solutions from one trivial solution of the equation. In this paper, we study the Darboux transformation of two soliton equations associated with 3 脳 3 matrix spectral problems and their applications. Firstly, the background and basic theory of soliton and Darboux transform are introduced. Secondly, the first order and N order Darboux transformation of the generalized TD equation is constructed by introducing the normal transformation of the spectral problem. Two nontrivial exact solutions of the generalized TD equation are obtained by using the first order Darboux transformation. Finally, the Darboux transformation of a differential-integral equation and its exact solution are discussed.
【學位授予單位】:華僑大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O175
本文編號:2234162
[Abstract]:Darboux transform is a direct and effective method to study the exact solutions of soliton equations. It establishes the relation between two different solutions of the same equation, and thus obtains many nontrivial solutions from one trivial solution of the equation. In this paper, we study the Darboux transformation of two soliton equations associated with 3 脳 3 matrix spectral problems and their applications. Firstly, the background and basic theory of soliton and Darboux transform are introduced. Secondly, the first order and N order Darboux transformation of the generalized TD equation is constructed by introducing the normal transformation of the spectral problem. Two nontrivial exact solutions of the generalized TD equation are obtained by using the first order Darboux transformation. Finally, the Darboux transformation of a differential-integral equation and its exact solution are discussed.
【學位授予單位】:華僑大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O175
【參考文獻】
相關期刊論文 前4條
1 賀勁松;張玲;程藝;李翊神;;AKNS系統(tǒng)Darboux變換的行列式表示[J];中國科學(A輯:數(shù)學);2006年09期
2 陳登遠;Bcklund變換與n孤子解[J];數(shù)學研究與評論;2005年03期
3 張大軍,鄧淑芳,陳登遠;mKdV-SineGordon方程的多孤子解[J];數(shù)學物理學報;2004年03期
4 谷超豪;Darboux變換的可逆性,可換性和周期性[J];中國科學技術大學學報;1993年01期
相關博士學位論文 前1條
1 王鑫;非線性模型的怪波解、孤子解及可積性[D];華東師范大學;2016年
相關碩士學位論文 前1條
1 孫明明;一個新耦合Burgers方程的Darboux變換及其無窮守恒律[D];鄭州大學;2015年
,本文編號:2234162
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2234162.html
最近更新
教材專著