加權(quán)人腦結(jié)構(gòu)網(wǎng)絡(luò)的模塊化算法研究
[Abstract]:Human brain is one of the most complex systems in nature. Researchers have been using various new technologies to study and explore the working principle and mechanism of human brain. In recent years, the technology of network reconstruction of human brain structure based on nuclear magnetic resonance imaging (NMR) is becoming more and more mature, and it is becoming the focus of brain science to analyze human brain network by using graph theory and complex network theory. The human brain structural network is a complex network with a modular structure, which plays an important role in the whole operation of the brain. At present, most of the researches focus on the modular partition method of the binary human brain structure network. The binary human brain structure network usually only reflects the relationship between brain regions, and the weighted human brain structure network based on the human brain physiological information can express the more specific relationship between the brain regions. On this basis, the module structure partition is more meaningful. In this paper, the modularization algorithm of weighted human brain network is studied. Firstly, the binary human brain structure network and the weighted human brain structure network are constructed based on the MRI data, and the binary human brain structure network is partitioned by Fast Newman algorithm and the results are analyzed. On this basis, the modular structure partition algorithm of weighted human brain network is studied, and a weighted Fast Newman modularization algorithm based on the idea of condensed nodes is proposed. Based on the weight of a single brain region and the total weight of the network, the algorithm constructs a weighted modular degree evaluation index, and takes its increment as a measure to determine whether the brain region is merged or not, so as to realize the module division. The algorithm is compared with the modular algorithm of the binary human brain network and the existing modular algorithm of the weighted network. The results show that the modular degree of this algorithm is higher than that of the traditional algorithm. Its module structure is also closer to the known physiological characteristics of the human brain. Finally, the algorithm is applied to the experimental data of schizophrenic patients and healthy people. The comparative experiments show that there are differences in the structure of the human brain network between the two groups.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R318;O157.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 武江芬;錢志余;陶玲;丁尚文;;靜息態(tài)腦功能網(wǎng)絡(luò)中核心節(jié)點(diǎn)的定位及其方法比較[J];生物醫(yī)學(xué)工程研究;2013年03期
2 張方風(fēng);鄭志剛;;復(fù)雜腦網(wǎng)絡(luò)研究:現(xiàn)狀與挑戰(zhàn)[J];上海理工大學(xué)學(xué)報(bào);2012年02期
3 堯德中;羅程;雷旭;薛開慶;夏陽;賴永秀;;腦成像與腦連接[J];中國生物醫(yī)學(xué)工程學(xué)報(bào);2011年01期
4 梁夏;王金輝;賀永;;人腦連接組研究:腦結(jié)構(gòu)網(wǎng)絡(luò)和腦功能網(wǎng)絡(luò)[J];科學(xué)通報(bào);2010年16期
5 周濤,柏文潔,汪秉宏,劉之景,嚴(yán)鋼;復(fù)雜網(wǎng)絡(luò)研究概述[J];物理;2005年01期
相關(guān)博士學(xué)位論文 前1條
1 郭浩;抑郁癥靜息態(tài)功能腦網(wǎng)絡(luò)異常拓?fù)鋵傩苑治黾胺诸愌芯縖D];太原理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前5條
1 翁政魁;基于重要度貢獻(xiàn)矩陣的人腦網(wǎng)絡(luò)核心節(jié)點(diǎn)定位方法研究[D];昆明理工大學(xué);2016年
2 邢桂陽;任務(wù)態(tài)下fMRI功能腦網(wǎng)絡(luò)的構(gòu)建與分析方法研究[D];太原理工大學(xué);2014年
3 高亮;阿爾茨海默病中高血壓對(duì)大腦皮層厚度和認(rèn)知功能的影響[D];蘭州大學(xué);2013年
4 王艷群;靜息態(tài)腦功能網(wǎng)絡(luò)的構(gòu)建及社團(tuán)結(jié)構(gòu)分析研究[D];太原理工大學(xué);2012年
5 方鵬;彌散張量成像的腦連接模式分析[D];國防科學(xué)技術(shù)大學(xué);2011年
,本文編號(hào):2181864
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2181864.html