無網(wǎng)格局部強(qiáng)弱法求解不規(guī)則域問題
[Abstract]:The meshless local Petrov-Galerkin (meshless local (meshless local) method is a representative meshless method, which is widely used in the field of computational mechanics. However, this method needs to perform integral operations on the boundary, and it is usually difficult to deal with irregular domain problems. In order to overcome the limitation of the MLPG method, a meshless local strong / weak (meshless local strong-weak MLSW method is proposed. The MLPG method is used to discretize the internal solution domain, the meshless intervention-point MLPG method is used to impose the natural boundary condition, and the collocation method is used to impose the essential boundary condition. It can be used to solve all kinds of complex irregular domain problems by avoiding boundary integral operation. Theoretically speaking, this combined method not only maintains the advantages of MLPG method in stable and accurate calculation, but also has the advantages of simplicity and flexibility in dealing with complex structural problems. The weak method and the strong method complement each other. In addition, the moving least square kernel (moving least squares coreSc approximation method is used to construct the shape function, which is an improvement of the traditional moving least squares (moving least squares MLS approximation method. MLSc uses kernel basis function instead of the usual basis function. It is advantageous to the accuracy and stability of the numerical solution, and the approximate calculation of its derivative becomes more simple. The results of numerical examples show that the new method is simple, stable and accurate, and shows the potential for engineering application.
【作者單位】: 長(zhǎng)沙理工大學(xué)道路結(jié)構(gòu)與材料交通行業(yè)重點(diǎn)實(shí)驗(yàn)室;長(zhǎng)沙理工大學(xué)交通運(yùn)輸工程學(xué)院;
【基金】:國家自然科學(xué)基金(51478053) 交通行業(yè)重點(diǎn)實(shí)驗(yàn)室(長(zhǎng)沙)開放基金(KFJ120201)資助項(xiàng)目
【分類號(hào)】:O241.82
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 姜瑜,郭寬良;高階有限單元邊界積分方法[J];計(jì)算物理;1988年04期
2 李柱恒;顏毅華;宋國鄉(xiāng);;關(guān)于常α線性無力場(chǎng)的邊界積分表示公式[J];工程數(shù)學(xué)學(xué)報(bào);2006年01期
3 杜其奎,馮崇嶺;熱方程的邊界積分與有限元方法耦合[J];淮北煤師院學(xué)報(bào)(自然科學(xué)版);1995年02期
4 鄭建軍;泊松方程中域積分化為邊界積分的方法[J];計(jì)算結(jié)構(gòu)力學(xué)及其應(yīng)用;1992年02期
5 扶名福,林鐘祥,楊德品;內(nèi)時(shí)彈塑性力學(xué)邊界積分理論和邊界元計(jì)算(二)[J];上海力學(xué);1989年02期
6 龍述堯;;關(guān)于非奇異邊界積分方法[J];湖南大學(xué)學(xué)報(bào);1989年01期
7 ;[J];;年期
相關(guān)博士學(xué)位論文 前2條
1 高景璐;計(jì)算開腔體散射有限元與邊界積分對(duì)稱耦合方法[D];吉林大學(xué);2011年
2 朱劍;復(fù)雜電磁問題的有限元、邊界積分及混合算法的快速分析技術(shù)[D];南京理工大學(xué);2011年
相關(guān)碩士學(xué)位論文 前1條
1 劉曉慧;求解三維復(fù)雜區(qū)域上Laplace方程的三階無核邊界積分方法[D];上海交通大學(xué);2015年
,本文編號(hào):2171424
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2171424.html