一類線性矩陣方程的數(shù)值求解方法
發(fā)布時(shí)間:2018-08-05 17:18
【摘要】:在科學(xué)研究、工程計(jì)算、經(jīng)濟(jì)控制等領(lǐng)域中,許多問(wèn)題的數(shù)學(xué)模型可以用線性矩陣方程來(lái)描述,因此,研究線性矩陣方程的求解方法具有重要意義。采用直接法求解大型矩陣方程,由于規(guī)模大、計(jì)算變?cè)、?jì)算誤差不易控制,因而,如何通過(guò)行之有效的數(shù)值迭代方法來(lái)求解線性矩陣方程的最優(yōu)解成為諸多數(shù)學(xué)工作者的研究方向之一。本文分多層次從易而難研究了線性矩陣方程(?)Ai(j)XiBi(j)=F(j)(j=1,2,…,M)的數(shù)值求解方法,其中Ai(j)∈Rm×n,Bi(j)∈Rn×p,F(i)∈Rm×p。首先討論了最簡(jiǎn)單最基本線性矩陣方程AX=B的幾種迭代解法,即把線性方程組數(shù)值迭代方法推廣運(yùn)用到線性矩陣方程數(shù)值求解方法上來(lái),得到諸如雅克比迭代法及基于此方法的方陣乘冪求和方法、高斯賽德?tīng)柕、SOR迭代法等,并給出了這些數(shù)值算法在一定條件下的收斂性,最后舉例證明算法的可行性。其次討論了諸如矩陣方程AX+XB=F的求解問(wèn)題,給出了這種線性矩陣方程五種計(jì)算方法——特征多項(xiàng)式法、特征向量法、級(jí)數(shù)法、上三角形法及小參數(shù)迭代法。然后對(duì)線性矩陣方程AXB + CXD = F,給出了諸如雅克比、高斯賽德?tīng)栆约皵M高斯賽德?tīng)柕确纸M迭代解法,給出相關(guān)收斂條件,并對(duì)相關(guān)的收斂性定理給出證明,最后舉例說(shuō)明這些算法的有效性。最后針對(duì)一般線性矩陣方程或方程組,討論了其變形共軛梯度算法,給出了單變量和多變量線性矩陣方程組的變形共軛梯度算法,數(shù)值算例說(shuō)明了這兩類矩陣方程在求某些特殊解時(shí)所給算法的正確性。本文第一章從應(yīng)用領(lǐng)域,對(duì)線性矩陣方程數(shù)值求解的研究背景及意義進(jìn)行了概述,對(duì)國(guó)內(nèi)外相關(guān)研究文獻(xiàn)進(jìn)行了綜述,對(duì)本文的主要工作安排作一闡述。第二章對(duì)求解線性矩陣方程AX=B的基本迭代算法以及這些算法的收斂性問(wèn)題進(jìn)行了討論,并用數(shù)值例子證明了所給算法的收斂性及正確性。第三章主要討論了簡(jiǎn)單線性矩陣方程AX+XB = F的直接求解方法和數(shù)值求解方法,包括特征多項(xiàng)式法,特征向量法,級(jí)數(shù)法(大參數(shù)方法),上三角形方法及小參數(shù)迭代法等。第四章對(duì)一般線性方程組,給出了變形共軛梯度數(shù)值迭代算法,舉例說(shuō)明這些算法的正確性。最后一章總結(jié)全文工作,并簡(jiǎn)單的展望未來(lái)的研究方向。
[Abstract]:In the fields of scientific research, engineering calculation, economic control and so on, many mathematical models of problems can be described by linear matrix equations. Therefore, it is of great significance to study the solving methods of linear matrix equations. By using direct method to solve large matrix equations, because of the large scale, the number of calculation variables and the calculation error are not easy to control, therefore, How to solve the optimal solution of linear matrix equation by effective numerical iterative method has become one of the research directions of many mathematics workers. In this paper, the linear matrix equation (?) Ai (j) XiBi (j) F (j) (JJ) is studied from the point of view of easy and difficult. Where Ai (j) 鈭,
本文編號(hào):2166457
[Abstract]:In the fields of scientific research, engineering calculation, economic control and so on, many mathematical models of problems can be described by linear matrix equations. Therefore, it is of great significance to study the solving methods of linear matrix equations. By using direct method to solve large matrix equations, because of the large scale, the number of calculation variables and the calculation error are not easy to control, therefore, How to solve the optimal solution of linear matrix equation by effective numerical iterative method has become one of the research directions of many mathematics workers. In this paper, the linear matrix equation (?) Ai (j) XiBi (j) F (j) (JJ) is studied from the point of view of easy and difficult. Where Ai (j) 鈭,
本文編號(hào):2166457
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2166457.html
最近更新
教材專著