時序網(wǎng)絡中的社團探測及演化分析方法
發(fā)布時間:2018-07-20 11:02
【摘要】:在傳統(tǒng)的動態(tài)社團探測方法中,由于每個時間片網(wǎng)絡之間相互獨立,無法高效地探測社團并分析社團的演化事件。針對傳統(tǒng)方法的不足,提出一種利用時序網(wǎng)絡的歷史信息,解決上述兩個問題。對于每個時間片網(wǎng)絡,僅計算連邊發(fā)生改變的節(jié)點;根據(jù)社團的定義及上一時刻的社團信息,探測當前時刻的社團并分析它們的演化事件。在人工網(wǎng)絡上的實驗結果表明,相對傳統(tǒng)方法,該方法能夠保證社團劃分的質量并分析社團的演化事件,提升了探測效率。
[Abstract]:In the traditional dynamic community detection method, because each time slice network is independent of each other, it is unable to detect the community and analyze the evolution events of the community efficiently. In view of the shortcomings of traditional methods, this paper presents a method to solve the above two problems by using the historical information of time series network. For each time slice network, only the nodes whose edges have changed are calculated. According to the definition of the community and the information of the community at the last moment, the community at the current time is detected and their evolution events are analyzed. The experimental results on artificial networks show that this method can guarantee the quality of community division and analyze the evolution events of communities, and improve the detection efficiency.
【作者單位】: 電子科技大學互聯(lián)網(wǎng)中心;電子科技大學大數(shù)據(jù)研究中心;
【基金】:國家自然科學基金項目(61433014、61673085) 中央高;究蒲谢痦椖(ZYGX2014Z002)
【分類號】:O157.5
本文編號:2133313
[Abstract]:In the traditional dynamic community detection method, because each time slice network is independent of each other, it is unable to detect the community and analyze the evolution events of the community efficiently. In view of the shortcomings of traditional methods, this paper presents a method to solve the above two problems by using the historical information of time series network. For each time slice network, only the nodes whose edges have changed are calculated. According to the definition of the community and the information of the community at the last moment, the community at the current time is detected and their evolution events are analyzed. The experimental results on artificial networks show that this method can guarantee the quality of community division and analyze the evolution events of communities, and improve the detection efficiency.
【作者單位】: 電子科技大學互聯(lián)網(wǎng)中心;電子科技大學大數(shù)據(jù)研究中心;
【基金】:國家自然科學基金項目(61433014、61673085) 中央高;究蒲谢痦椖(ZYGX2014Z002)
【分類號】:O157.5
【相似文獻】
相關期刊論文 前1條
1 王建;馮偉森;邱興超;劉繼;盧林;;基于BP模型的KAD網(wǎng)絡核心節(jié)點識別算法研究[J];計算機工程與應用;2013年07期
相關碩士學位論文 前1條
1 王偉;基于核心節(jié)點的局部社團發(fā)現(xiàn)及相關研究[D];華東理工大學;2014年
,本文編號:2133313
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2133313.html
最近更新
教材專著