退化雙曲方程的能控性和Ginzburg-Landau方程的不靈敏控制
[Abstract]:In this paper, the controllability of one-dimensional degenerate hyperbolic equation and insensitive control of Ginzburg-Landau equation are studied. For degenerate hyperbolic equations. Different positions are applied according to the control. We study the boundary controllability and internal controllability respectively for some degenerate hyperbolic equations which can not be controlled from zero. We study its weaker controllability. The region controllability and delay region controllability. Ginzburg-Landau equation can describe many superconducting phenomena of nonlinear waves and play an important role in amplitude equation theory. We study the existence of insensitive control for nonlinear Ginzburg-Landau equation. The main content of this paper is divided into the following four parts. In chapter 2, we study the existence of insensitive control for a class of nonlinear complex Ginzburg-Landau equations with homogeneous Dirichlet boundary conditions and internal control. When the nonlinear term in the equation satisfies the appropriate superlinear growth condition at infinity. We prove the existence of insensitive control for the corresponding semilinear Ginzburg-Landau equation. meanwhile When the nonlinear term in the equation is only a smooth function without any growth condition, we obtain the local results of insensitive control. According to the usual method, we transform the insensitive control problem into the controllability problem of a linear and semi-linear Ginzburg-Landau equation coupled with a single control system. The key is to establish an observable inequality for linearly coupled Ginzburg-Landau equations under a single observation. In chapter 3 of this paper. We study the boundary zero controllability problem of one dimensional linear degenerate hyperbolic equation. Since the degenerate hyperbolic equation still has time reversibility, its zero controllability is equivalent to exact controllability. First, we discuss the fitness of the linear degenerate hyperbolic equation. And then. The zero controllability of some degenerate hyperbolic equations when the control is applied to the nondegenerate boundary is given. In this case, any initial value in the state space is zero controllable, which is different from the known controllability of the control applied on the degenerate boundary. At the same time, we give the exact expression of controllability time. In addition. For some other degenerate hyperbolic equations, we give a counterexample of nonzero controllability. In chapter 4, we study the internal zero controllability of one dimensional semilinear degenerate hyperbolic equations. By using Hilbert uniqueness method, we need to establish an observability estimate for linear degenerate hyperbolic equations. We first prove the unique continuation of the degenerate hyperbolic equation by the characteristic line method, and then prove the observable inequality by the unique continuation method combined with the multiplier method. The key lies in the construction of multipliers. In the fifth chapter of this paper, we focus on the problem of zero controllability in the delay domain of one dimensional linear degenerate hyperbolic equation with internal control. Different from the nondegenerate hyperbolic equations, the zero controllability results of some degenerate hyperbolic equations do not hold true. Therefore, the zero controllability of the delay region is introduced, which means finding a control such that the corresponding state of the degenerate hyperbolic equation is constant to zero in a subset of the space region and for a period of time. To this end. We first establish the domain zero controllability of degenerate hyperbolic equations. This problem can also be transformed into an appropriate observability problem for linear degenerate hyperbolic equations. The key is to construct appropriate multipliers to prove this observable inequality.
【學(xué)位授予單位】:東北師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O231
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊金林;一類雙曲方程解的一種估計(jì)[J];包頭鋼鐵學(xué)院學(xué)報(bào);1999年01期
2 姚璧蕓;雙曲有界平均振動(dòng)函數(shù)的一些性質(zhì)[J];浙江大學(xué)學(xué)報(bào)(理學(xué)版);2000年01期
3 劉鵬程,牟珍寶;產(chǎn)量雙曲遞減方程線性簡(jiǎn)單求法[J];河南石油;2000年01期
4 邢春娜;韓英豪;;擬雙曲軌道的強(qiáng)跟蹤性[J];莆田學(xué)院學(xué)報(bào);2008年05期
5 霍宏暹;;關(guān)於雙曲管l#壓表[J];物理通報(bào);1954年03期
6 吳茲潛,(衤四羽)啟沃,鐘鉅康;平面雙曲方程組特征問(wèn)題唯一可解性的離散現(xiàn)象(Ⅰ)[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);1985年02期
7 濮德潛;重復(fù)變函數(shù)(下)[J];數(shù)學(xué)研究與評(píng)論;1985年03期
8 范家讓 ,張巨勇;疊層雙曲率厚殼靜、動(dòng)態(tài)問(wèn)題的分析解[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);1990年04期
9 田立平;一類雙曲方程反問(wèn)題的存在性和唯一性[J];河北理工學(xué)院學(xué)報(bào);1994年03期
10 李光華;非線性系統(tǒng)雙曲周期解的存在性[J];懷化師專學(xué)報(bào);1995年02期
相關(guān)會(huì)議論文 前7條
1 王媛;白國(guó)良;;超大型雙曲冷卻塔的數(shù)值風(fēng)洞研究[A];第六屆全國(guó)土木工程研究生學(xué)術(shù)論壇論文集[C];2008年
2 蔣賢龍;;駁接爪點(diǎn)式雙曲斜切面橢圓形玻璃幕墻安裝技術(shù)及質(zhì)量控制[A];第五屆全國(guó)鋼結(jié)構(gòu)工程技術(shù)交流會(huì)論文集[C];2014年
3 郝重濤;姚陳;張建中;;ATI介質(zhì)中P波非雙曲時(shí)差數(shù)值研究[A];中國(guó)地球物理2010——中國(guó)地球物理學(xué)會(huì)第二十六屆年會(huì)、中國(guó)地震學(xué)會(huì)第十三次學(xué)術(shù)大會(huì)論文集[C];2010年
4 呂淑娟;王沖;陸啟韶;;Regularity of Attractor for 3D Derivative Ginzburg-Landau Equation[A];第十二屆全國(guó)非線性振動(dòng)暨第九屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2009年
5 全永兵;張化光;;廣義模糊雙曲正切模型及其逼近性研究[A];2001系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
6 徐振源;;局部耦合條件下兩個(gè)離散的Ginzberg-Landau方程同步化[A];第二屆全國(guó)復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)學(xué)術(shù)論壇論文集[C];2005年
7 ;The Fifth East China Partial Differential Equations Conference(July 7)[A];Abstracts of the Fifth East China Partial Differential Equations Conference[C];2008年
相關(guān)重要報(bào)紙文章 前1條
1 李亞蘭;何謂“雙曲綜合征”[N];中國(guó)醫(yī)藥報(bào);2001年
相關(guān)博士學(xué)位論文 前9條
1 王林;部分雙曲系統(tǒng)的擬跟蹤性態(tài)與熵[D];河北師范大學(xué);2016年
2 張牧明;退化雙曲方程的能控性和Ginzburg-Landau方程的不靈敏控制[D];東北師范大學(xué);2016年
3 鄭華林;雙曲平衡律系統(tǒng)解的定性行為[D];清華大學(xué);2016年
4 靳平;群代數(shù)的雙曲模[D];華中師范大學(xué);2011年
5 鄒自然;雙曲折現(xiàn)與時(shí)間一致投資決策[D];湖南大學(xué);2014年
6 劉利敏;Landau-Lifshitz方程解的一些研究[D];重慶大學(xué);2010年
7 李棟龍;三維Ginzburg Landau方程的動(dòng)力學(xué)行為[D];中國(guó)工程物理研究院北京研究生部;2003年
8 楊干山;多維Landau-Lifshitz方程的δ型黏性解、Blow up解和整體解[D];中國(guó)工程物理研究院北京研究生部;2002年
9 高文龍;特異性光學(xué)材料的拓?fù)涮匦耘c表面光學(xué)態(tài)傳播特性研究[D];天津大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 鮑慧;雙曲面積偏差與加權(quán)Bergman空間中的若干問(wèn)題[D];華僑大學(xué);2015年
2 齊紅云;基于模糊雙曲正切模型的回聲狀態(tài)網(wǎng)改進(jìn)及其應(yīng)用研究[D];渤海大學(xué);2016年
3 秦其偉;大型雙曲冷卻塔的風(fēng)荷載特性研究[D];石家莊鐵道大學(xué);2016年
4 張艷妮;基于T-S模糊雙曲正切模型的非線性系統(tǒng)控制[D];西安電子科技大學(xué);2015年
5 晉鳳東;基于雙曲映射的復(fù)雜網(wǎng)絡(luò)生存性指標(biāo)研究[D];華中科技大學(xué);2015年
6 邢曉敏;兩類雙曲方程組的經(jīng)典解[D];安徽師范大學(xué);2016年
7 柳代權(quán);Chaplygin速端方程在雙曲區(qū)域與混合區(qū)域中的極值性質(zhì)[D];南京理工大學(xué);2017年
8 楊濰旭;四邊簡(jiǎn)支復(fù)合材料層合正交雙曲殼的拉氏求解法[D];中國(guó)民航大學(xué);2017年
9 張芳;極限擬跟蹤性質(zhì)[D];重慶大學(xué);2015年
10 仲鵬;類雙曲殼的構(gòu)建及應(yīng)用[D];東北大學(xué);2009年
,本文編號(hào):2127115
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2127115.html