天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數(shù)學論文 >

線性耦合熱方程的唯一連續(xù)性

發(fā)布時間:2018-07-03 18:02

  本文選題:耦合熱方程 + 唯一連續(xù)性 ; 參考:《河南師范大學》2017年碩士論文


【摘要】:本文主要研究有界凸區(qū)域Ω上的線性耦合熱方程的唯一連續(xù)性質.其中耦合熱方程滿足齊次狄利克雷邊界條件,并且方程的系數(shù)和時間有關.本文分為三章,其中:第一章為緒論部分,主要分為兩節(jié),先介紹了關于偏微分方程的唯一連續(xù)性的研究現(xiàn)狀,并且給出本文所研究的熱方程及其滿足的條件.然后,將我們的結果以兩個不等式的形式給出:以及第二章首先引入函數(shù)Gλ(x,t),Hλ(t),Dλ(t)和頻率函數(shù)Nλ(t),并研究它們的性質.最后利用頻率函數(shù)法給出定理1.1和定理1.2的詳細證明.從主要定理所得到的不等式不難看出:1.如果在一個小的區(qū)域ω上,y(x,T)= z(x,T)=0,則在一個較大的區(qū)域Ω上有,y(x,T)=z(x,T)= 0.2.如果在一個小的區(qū)域ω上,y(·,T)= z(·,:T)= 0,則在一個較大的區(qū)域Ω(0,T)上有,y(·,·)=z(·,·)= 0.第三章主要是對本文的內(nèi)容做一個回顧與總結.本文建立了線性耦合熱方程的解的唯一連續(xù)性定理,并且給出了詳細的證明.利用我們的結果,可以對更多類型的偏微分方程的解的唯一連續(xù)性質來做出一個具體的定量估計,甚至可以將我們的結論用于控制理論的研究.
[Abstract]:In this paper, we study the unique continuity of linear coupled heat equations on bounded convex domain 惟. The coupled heat equation satisfies the homogeneous Delikley boundary condition and the coefficient of the equation is time-dependent. This paper is divided into three chapters: the first chapter is the introduction, which is mainly divided into two sections. Firstly, we introduce the research status of the unique continuity of partial differential equations, and give the heat equations studied in this paper and their satisfying conditions. Then, we give our results in the form of two inequalities: in the second chapter, we introduce the function G 位 (XT) H 位 (t) D 位 (t) and the frequency function N 位 (t), and study their properties. Finally, the detailed proofs of Theorem 1.1 and Theorem 1.2 are given by the method of frequency function. The inequality obtained from the main theorem is not difficult to see: 1. If we have y (XT) = z (XT) 0 on a small region 蠅, then we have y (XT) z (XT) = 0.2 on a larger region 惟. If y (T) = z (n: t) = 0 on a small region 蠅, then there is y (,) z (,) = 0 on a larger region 惟 (0T). The third chapter is a review and summary of the content of this paper. In this paper, the unique continuity theorem for the solution of the linear coupled heat equation is established, and the detailed proof is given. By using our results, we can make a specific quantitative estimate of the unique continuity of solutions of more types of partial differential equations, and even apply our conclusions to the study of control theory.
【學位授予單位】:河南師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O175.2

【相似文獻】

相關期刊論文 前10條

1 魏炎炎;李富;;基于一個新的混沌系統(tǒng)線性耦合反饋同步研究[J];榆林學院學報;2013年04期

2 劉振澤;田彥濤;宋彥;;基于線性耦合下混沌系統(tǒng)的同步條件[J];物理學報;2006年08期

3 李凡;靳伍銀;馬軍;;非線性耦合對線性耦合同步的調制研究[J];物理學報;2012年24期

4 劉曉君;李險峰;何萬生;楊麗新;;網(wǎng)絡系統(tǒng)的線性耦合混沌同步[J];黑龍江科技學院學報;2010年06期

5 韓昌玲;;具線性耦合非線性網(wǎng)絡的完全同步[J];合肥學院學報(自然科學版);2006年04期

6 顧圣士,王本昌,陳云;某些耦合離散系統(tǒng)渾沌映射的同步性[J];上海交通大學學報;2004年04期

7 周天壽;;線性耦合振子中的回聲波及其穩(wěn)定性[J];江西師范大學學報(自然科學版);2006年01期

8 曾朝蓉;李科贊;;一類時滯線性耦合網(wǎng)絡的自適應聚類同步[J];桂林電子科技大學學報;2011年06期

9 任傳波;周繼磊;;分段線性耦合動力系統(tǒng)的周期解及穩(wěn)定性分析[J];應用力學學報;2011年05期

10 周斌,徐濟仲;氫鍵鏈中的快模與慢模孤子偶[J];湖北大學學報(自然科學版);1999年02期

相關會議論文 前2條

1 陳娟;陸君安;;線性耦合格子的離散復雜動力網(wǎng)絡的牽制控制[A];第五屆全國復雜網(wǎng)絡學術會議論文(摘要)匯集[C];2009年

2 劉杰;;一類線性耦合復雜混沌動力網(wǎng)絡的實用同步準則[A];第二十六屆中國控制會議論文集[C];2007年

相關碩士學位論文 前4條

1 李君;線性耦合熱方程的唯一連續(xù)性[D];河南師范大學;2017年

2 郭倫;一類線性耦合方程組的徑向對稱正解[D];華中師范大學;2015年

3 魏炎炎;超Rabinovich系統(tǒng)混沌現(xiàn)象及混沌同步的研究[D];西安建筑科技大學;2012年

4 吳凱;頻率函數(shù)[D];浙江大學;2013年



本文編號:2094536

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2094536.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶60323***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com