基于自適應(yīng)極大后驗估計的空間目標(biāo)運(yùn)動狀態(tài)確定
發(fā)布時間:2018-06-30 02:16
本文選題:自適應(yīng)極大后驗估計 + 非線性系統(tǒng) ; 參考:《系統(tǒng)科學(xué)與數(shù)學(xué)》2017年08期
【摘要】:提出一種新的基于自適應(yīng)極大后驗(AMAP)估計的空間目標(biāo)運(yùn)動狀態(tài)確定方法,致力于削弱未知干擾對狀態(tài)估計的不利影響.針對帶有干擾的離散時間非線性隨機(jī)系統(tǒng)設(shè)計了AMAP估計算法,采用高斯-牛頓優(yōu)化方法實現(xiàn)極大后驗(MAP)估計,通過模式切換和加權(quán)融合強(qiáng)化算法的自適應(yīng)能力.基于理論分析導(dǎo)出了狀態(tài)估計均方誤差(MSE)的表達(dá)式,說明所提算法能夠達(dá)到優(yōu)于傳統(tǒng)擴(kuò)展卡爾曼濾波(EKF)和MAP估計算法的精度.以空間目標(biāo)運(yùn)動狀態(tài)確定系統(tǒng)為例,通過蒙特卡洛仿真驗證了AMAP估計算法的性能優(yōu)勢,不同條件下的對比研究表明,所提算法具備應(yīng)對未知干擾的自適應(yīng)能力,能夠有效提升空間目標(biāo)運(yùn)動狀態(tài)估計精度.
[Abstract]:A new adaptive maximum a posteriori (AMAP) estimation method is proposed to determine the moving state of a space target, which aims to reduce the adverse effects of unknown disturbances on state estimation. AMAP estimation algorithm is designed for discrete-time nonlinear stochastic systems with disturbance. The maximum a posteriori (map) estimation is realized by using Gao Si Newton optimization method, and the adaptive ability of the algorithm is enhanced by mode switching and weighted fusion. The expression of mean square error (MSE) of state estimation is derived based on theoretical analysis. It shows that the proposed algorithm can achieve better accuracy than the traditional extended Kalman filter (EKF) and map estimation algorithm. Taking the motion state determination system of space target as an example, the performance advantages of AMAP estimation algorithm are verified by Monte Carlo simulation. The comparative study under different conditions shows that the proposed algorithm has adaptive ability to deal with unknown interference. It can effectively improve the accuracy of motion state estimation of space targets.
【作者單位】: 北京控制工程研究所;空間智能控制技術(shù)重點(diǎn)實驗室;
【基金】:國家自然科學(xué)基金(61573059,61690215) 北京市自然科學(xué)基金(4162070) 國家杰出青年科學(xué)基金(61525301)資助課題
【分類號】:O212;TN713
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 李仲飛;高金窯;;模型不確定下的最優(yōu)資產(chǎn)配置[J];中山大學(xué)學(xué)報(社會科學(xué)版);2008年04期
相關(guān)博士學(xué)位論文 前1條
1 蔡洋萍;通貨膨脹目標(biāo)制下基于模型不確定性的最優(yōu)貨幣政策研究[D];湖南大學(xué);2010年
相關(guān)碩士學(xué)位論文 前1條
1 劉也;空間目標(biāo)運(yùn)動狀態(tài)的實時估計[D];國防科學(xué)技術(shù)大學(xué);2006年
,本文編號:2084412
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2084412.html
最近更新
教材專著