一類具有脈沖作用與飽和治愈率的SIRS模型的分析
發(fā)布時(shí)間:2018-06-21 09:52
本文選題:SIRS傳染病模型 + 出生脈沖 ; 參考:《西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版)》2017年09期
【摘要】:研究了一類具有出生脈沖,脈沖接種和飽和治愈率的SIRS傳染病模型.首先研究了無病周期解和非平凡周期解的存在性和穩(wěn)定性,得到了分支存在的條件,其次得到了一個(gè)Poincaré映射,運(yùn)用Poincaré映射和中心流形定理討論染病周期解的Flip分支.
[Abstract]:A Sirs infectious disease model with birth pulse, pulse vaccination and saturated cure rate was studied. Firstly, the existence and stability of disease-free periodic solutions and nontrivial periodic solutions are studied, and the conditions for the existence of bifurcation are obtained. Then, a Poincar 茅 map is obtained. The Flip bifurcation of infected periodic solutions is discussed by using Poincar 茅 mapping and central manifold theorem.
【作者單位】: 山西師范大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院;
【基金】:山西省自然科學(xué)基金項(xiàng)目(2013011002-2)
【分類號(hào)】:O175
,
本文編號(hào):2048179
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2048179.html
最近更新
教材專著