一類具有飽和傳染率的時(shí)滯傳染病模型的全局穩(wěn)定性
發(fā)布時(shí)間:2018-06-09 15:36
本文選題:傳染率 + 基本再生數(shù); 參考:《蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版)》2017年05期
【摘要】:研究了一類具有非線性飽和傳染率和時(shí)滯效應(yīng)的SEIR傳染病模型,給出了用于判斷疾病是否持續(xù)流行的基本再生數(shù)R_0.利用Lyapunov方法和LaSalle不變?cè)碜C明了當(dāng)R_0≤1時(shí),無病平衡點(diǎn)全局漸近穩(wěn)定;當(dāng)R_01時(shí),疾病平衡點(diǎn)全局穩(wěn)定.
[Abstract]:In this paper, a class of SEIR infectious disease models with nonlinear saturation infection rate and time-delay effect is studied, and the basic regenerative number RW _ 0 is given to judge whether the disease is persistent or not. By using Lyapunov method and LaSalle invariant principle, it is proved that the disease-free equilibrium is globally asymptotically stable when R _ (0) 鈮,
本文編號(hào):2000241
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/2000241.html
最近更新
教材專著