天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數(shù)學論文 >

拓展設計及部分因析設計的空間填充性質(zhì)

發(fā)布時間:2018-06-06 01:41

  本文選題:拓展設計 + 均勻性; 參考:《華中師范大學》2015年碩士論文


【摘要】:隨著科學技術的進步,亟待解決的復雜問題層出不窮,這給試驗設計帶來了新的機遇和挑戰(zhàn),可參見Bates et al. (1996).如何從眾多的備選設計中選出合適的設計,并使它在某種意義下具有優(yōu)良性質(zhì)備受理論研究和實踐應用的關注.因此,研究者們提出了許多設計篩選準則.在這眾多的設計篩選準則中,均勻性準則和最小矩混雜準則具有優(yōu)良的性質(zhì),被廣泛采用,參見]Eang, Li and Sudjianto (2006)和Xu (2003).面對復雜的研究對象,一種很自然的試驗策略就是采取序貫實驗.實驗者按照最初選定的設計進行實驗,而在實驗進行的過程中或在實驗完成時又按照另一個設計進行了一部分補充實驗,故整個實驗階段采用的設計由這前后兩個設計共同構(gòu)成,我們稱其為拓展設計.這類設計即符合人類認識自然的規(guī)律,同時又時常應用于農(nóng)業(yè)實驗、工業(yè)實驗以及計算機實驗等眾多領域.因此,研究拓展設計的性質(zhì)具有重要意義.本文研究了拓展設計的空間填充性質(zhì),旨在為這類設計的應用提供必要的理論基礎.本文的研究表明當初始設計選為均勻設計,附加設計盡可能均勻時,不但附加設計對初始設計均勻性的破壞最小,而且保證了拓展設計盡可能的均勻.在可卷型L2偏差和Lee偏差下,我們給出了拓展設計偏差的一個下界,這不僅可以為比較不同設計的均勻性提供一個公平的基準,同時可以大幅度提高計算機收索均勻拓展設計的效率.受均勻拓展設計的啟發(fā),我們證明了設計的Lee偏差可以表述為其頻率向量的二次型,并建立了在Lee偏差下一般混水平設計與其補設計的關系.Cheng and Wu (2001)指出當因子的水平數(shù)超過2時,一個或者多個因子的水平置換將改變設計的幾何結(jié)構(gòu),從而改變設計的統(tǒng)計性質(zhì).因此,高水平部分因析設計的空間填充性質(zhì)近幾年來越來越受到重視,參見Tang, Xu and Lin (2012), Zhou and Xu(2014).本文研究了最小矩混雜設計的空間填充性質(zhì).我們的結(jié)論表明在保持設計最小矩混雜性的基礎上,水平置換改善了設計的空間填充性質(zhì).我們還建立了基于核函數(shù)定義的平均偏差與正交性準則之間的關系,這進一步豐富了平均偏差的統(tǒng)計評價.
[Abstract]:With the progress of science and technology, there are many complicated problems that need to be solved urgently. This brings new opportunities and challenges to experimental design. See Bates et al. In 1996. How to select a suitable design from many alternative designs and make it have good properties in a certain sense has attracted much attention from theoretical research and practical application. Therefore, many design screening criteria have been proposed. Among these design screening criteria, the uniformity criterion and the minimum moment hybrid criterion have excellent properties and are widely used. See] Eang, Li and Sudjianto / 2006) and Xu / 2003. In the face of complex research objects, a very natural test strategy is to adopt sequential experiments. The experimenter carried out the experiment according to the original design, and in the course of the experiment or at the time of the completion of the experiment, a part of the supplementary experiment was carried out according to another design. Therefore, the design used in the whole experiment stage is composed of the two designs before and after, which we call the extended design. This kind of design not only accords with the laws of human understanding of nature, but also is often used in many fields, such as agricultural experiments, industrial experiments and computer experiments. Therefore, it is of great significance to study the properties of extended design. In this paper, the space filling properties of extended design are studied in order to provide the necessary theoretical basis for the application of this kind of design. The research in this paper shows that when the initial design is chosen as uniform design and the additional design is as uniform as possible, not only the damage to the uniformity of the initial design is minimized by the additional design, but also the extended design is guaranteed to be as uniform as possible. In this paper, we give a lower bound of extended design deviation under the conditions of volume L2 deviation and Lee deviation, which can not only provide a fair benchmark for comparing the uniformity of different designs. At the same time, it can greatly improve the efficiency of the computer cable-receiving uniform expansion design. Inspired by the uniform extended design, we prove that the Lee deviation of the design can be expressed as the quadratic form of its frequency vector. The relation between the general mixing level design and its complementary design under Lee deviation is established. Cheng and Wu (2001) points out that the horizontal substitution of one or more factors will change the geometric structure of the design when the horizontal number of factors exceeds 2. In order to change the statistical nature of the design. Therefore, in recent years, more and more attention has been paid to the space filling properties of the high level design. See Tang, Xu and Lin / 2012, Zhou and / 2014. In this paper, the space filling property of minimum moment hybrid design is studied. Our conclusion shows that the horizontal displacement improves the space filling property of the design based on the minimum moment hybrid property of the design. We also establish the relationship between the average deviation and the orthogonality criterion based on the kernel function definition, which further enriches the statistical evaluation of the average deviation.
【學位授予單位】:華中師范大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:O212.6

【相似文獻】

相關期刊論文 前10條

1 黃玉盈;朱方;;貯液圓柱容器濕模態(tài)的正交性及其在動力響應分析中的應用[J];固體力學學報;1990年03期

2 劉曉平,李啟,徐燕申,彭澤民;基于正交性條件識別機械結(jié)構(gòu)結(jié)合面參數(shù)方法的改進[J];應用力學學報;1996年03期

3 白朝芳,侯晉川;保正交性或與|·|~k交換的可加映射[J];數(shù)學學報;2002年05期

4 李春,,程新廣,王宏光;貼體網(wǎng)格生成技術中正交性和空間疏密控制研究[J];上海理工大學學報;1998年04期

5 張芳娟;吉國興;;B(H)上保正交性的可加映射[J];陜西師范大學學報(自然科學版);2005年04期

6 牛萬青,徐輔新;態(tài)克隆中的正交性條件[J];貴州大學學報(自然科學版);2002年02期

7 趙連闊;侯晉川;;保不定半正交性的可加映射[J];系統(tǒng)科學與數(shù)學;2007年05期

8 賈淑平;;指數(shù)函數(shù)正交系與和諧對[J];紡織高;A科學學報;2011年02期

9 孔亮;曹懷信;;保正交映射與正交性方程的穩(wěn)定性[J];陜西師范大學學報(自然科學版);2008年05期

10 朱華,趙桂林,丁星陽;可調(diào)節(jié)正交性的代數(shù)網(wǎng)格生成方法研究[J];浙江大學學報(工學版);2003年02期

相關會議論文 前2條

1 張藝騰;馮永勇;;一種三軸磁強計的正交性標定方法[A];中國空間科學學會空間探測專業(yè)委員會第二十六屆全國空間探測學術研討會會議論文集[C];2013年

2 王媛;楊軍;許國旺;;基于信息熵理論預測二維液相色譜柱系統(tǒng)的正交性[A];第十五次全國色譜學術報告會文集(下冊)[C];2005年

相關碩士學位論文 前10條

1 勾廷勛;拓展設計及部分因析設計的空間填充性質(zhì)[D];華中師范大學;2015年

2 李萬濤;廣義正交性點態(tài)差異的量化研究[D];哈爾濱理工大學;2007年

3 吳森林;正交性相關問題的研究[D];哈爾濱理工大學;2006年

4 張芳娟;關于保反正交性、保交換零積可加映射的研究[D];陜西師范大學;2006年

5 李晶瑩;賦范空間中的正交性及圓的相關問題的研究[D];哈爾濱理工大學;2011年

6 賈俊晶;Birkhoff正交與等腰正交差異的量化研究[D];哈爾濱理工大學;2007年

7 楊沖;關于Banach空間中正交性的若干研究[D];陜西師范大學;2005年

8 劉珊珊;賦范線性空間中與正交性相關的若干問題[D];哈爾濱理工大學;2007年

9 李雪;Minkowski平面廣義正交性和幾何常數(shù)D(X)的研究[D];黑龍江大學;2010年

10 杜雅琴;一些自仿測度的奇異性和μ_λ正交性[D];陜西師范大學;2012年



本文編號:1984428

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1984428.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶d48f4***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com