天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

笛卡爾的“普遍數(shù)學(xué)”思想闡釋

發(fā)布時(shí)間:2018-05-29 19:05

  本文選題:普遍數(shù)學(xué) + 笛卡爾 ; 參考:《上海師范大學(xué)》2017年碩士論文


【摘要】:笛卡爾作為近代哲學(xué)的創(chuàng)始人,他創(chuàng)立了一套理性主義的方法,形成了較完整的科學(xué)方法論,并運(yùn)用這套方法來(lái)建立自己的哲學(xué)體系。在笛卡爾的早期思想中,笛卡爾選擇了結(jié)合“量”、“秩序”與“理性”的數(shù)學(xué)方法作為其方法的模式,建立了一套以“普遍數(shù)學(xué)”為指導(dǎo)原則,以精神直觀和理性演繹為核心,以分析和綜合為步驟的獨(dú)特?cái)?shù)學(xué)方法論體系。并將這種方法運(yùn)用到具體數(shù)學(xué)中,創(chuàng)立了解析幾何學(xué),打開(kāi)了數(shù)學(xué)史上新紀(jì)元。“普遍數(shù)學(xué)”思想的思維方式、數(shù)學(xué)的論證方法、數(shù)學(xué)的本質(zhì)特征都在很大程度上影響了笛卡爾哲學(xué)思想及其哲學(xué)體系的建構(gòu)!捌毡閿(shù)學(xué)”對(duì)西方近代的其他理性主義哲學(xué)家斯賓諾莎、萊布尼茨、帕斯卡爾等人的哲學(xué)觀也產(chǎn)生了深遠(yuǎn)的影響!捌毡閿(shù)學(xué)”的思想讓數(shù)學(xué)推動(dòng)了西方近代哲學(xué)家對(duì)于世界本原的思考,這種影響是基于人類(lèi)的理性追求秩序、確定、永恒、統(tǒng)一的內(nèi)在的自然傾向和數(shù)學(xué)證明所彰顯的確定、有序、自明的形式的內(nèi)在同一性。對(duì)于“普遍數(shù)學(xué)”思想的研究,國(guó)內(nèi)一部分學(xué)者把重點(diǎn)放在“普遍數(shù)學(xué)”的翻譯上,以探求“普遍數(shù)學(xué)”和“普遍方法”的區(qū)別問(wèn)題;也有學(xué)者把笛卡爾的數(shù)學(xué)思想放在整個(gè)西方近代哲學(xué)史上進(jìn)行綜合性考量。國(guó)外研究主要集中在笛卡爾數(shù)學(xué)思想中的具體數(shù)學(xué)問(wèn)題;還有學(xué)者關(guān)注出現(xiàn)“普遍數(shù)學(xué)”思想的《探求真理的指導(dǎo)原則》的文本的重要性和完整性。根據(jù)國(guó)內(nèi)外相關(guān)文獻(xiàn),筆者發(fā)現(xiàn)并沒(méi)有對(duì)于笛卡爾“普遍數(shù)學(xué)”的系統(tǒng)性研究,所以這就是本文的構(gòu)思初衷。首先本文第一章就笛卡爾所處的時(shí)代背景進(jìn)行考察,特殊的生長(zhǎng)環(huán)境、教育背景,為笛卡爾的“普遍數(shù)學(xué)”思想提供了前期準(zhǔn)備。宗教思想的碰撞、教會(huì)學(xué)校對(duì)數(shù)學(xué)教育的重視、生長(zhǎng)環(huán)境的自由與開(kāi)放,都讓笛卡爾對(duì)于數(shù)學(xué)的確定性、簡(jiǎn)明性開(kāi)始著迷。第二章對(duì)“普遍數(shù)學(xué)”的思想淵源進(jìn)行探討,柏拉圖的可知世界、奧古斯丁的“自然之光”,從一定程度上都影響著笛卡爾“普遍數(shù)學(xué)”思想的形成,再加上伽利略的定量方法造成了科學(xué)革命的爆發(fā),并導(dǎo)致科學(xué)主義的興起,哲學(xué)開(kāi)始往科學(xué)化和數(shù)學(xué)化的方向發(fā)展,這一切都是“普遍數(shù)學(xué)”思想產(chǎn)生所需要的時(shí)代背景。第三章就“普遍數(shù)學(xué)”的思想涵義展開(kāi)討論,最初“普遍數(shù)學(xué)”一詞在何文本中出現(xiàn),笛卡爾對(duì)其的解釋又是什么,笛卡爾早期從事的分析數(shù)學(xué)和后來(lái)的物理數(shù)學(xué)等相關(guān)領(lǐng)域如何體現(xiàn)了“普遍數(shù)學(xué)”的思想。第四章重點(diǎn)討論現(xiàn)在爭(zhēng)議最多的,出現(xiàn)“普遍數(shù)學(xué)”一詞的文本《探求真理的指導(dǎo)原則》中第四原則異構(gòu)性的問(wèn)題,這直接表明了笛卡爾在書(shū)寫(xiě)文本時(shí)處在了不同的兩個(gè)時(shí)期,而這關(guān)鍵的兩個(gè)時(shí)期恰好很好的說(shuō)明了笛卡爾關(guān)于”普遍數(shù)學(xué)”思想從早期雛形到后來(lái)在實(shí)踐應(yīng)用的整個(gè)過(guò)程。這對(duì)整體把握“普遍數(shù)學(xué)”思想有著很大的作用。本文對(duì)笛卡爾的“普遍數(shù)學(xué)”思想的闡釋,希望能夠系統(tǒng)性理解“普遍數(shù)學(xué)”的思想涵義。“普遍數(shù)學(xué)”思想在近代哲學(xué)史、數(shù)學(xué)史上都產(chǎn)生了深遠(yuǎn)影響,這個(gè)方面本文沒(méi)有進(jìn)行詳細(xì)討論,相關(guān)內(nèi)容有待進(jìn)一步研究。
[Abstract]:As the founder of modern philosophy, Descartes created a set of rationalist methods, formed a more complete scientific methodology and used this set of methods to establish his own philosophical system. In the early thoughts of Descartes, Descartes chose the mathematical method of combining "quantity", "order" and "rational" as the model of his method. A set of unique mathematical methodology system is set up with the principle of "universal mathematics" as the guiding principle, the core of the spiritual intuition and the rational deduction, and the analysis and synthesis of the mathematical methodology. And this method is applied to the concrete mathematics, and the analytic geometry is founded, the new era of mathematical history has been opened. The thinking mode of "universal mathematics" thought and mathematics have been opened. The method of argumentation and the essential characteristics of mathematics have greatly influenced the construction of Descartes's philosophy and its philosophical system. "Universal mathematics" has a profound influence on the philosophy of other western modern rationalist philosophers, Spinoza, Leibniz, Pascale and others. It has promoted the thinking of the modern western philosophers on the original world. This effect is based on the intrinsic identity of the definite, orderly and self-evident form based on the rational pursuit of order, determination, eternity, unity and mathematical proof, based on the rational pursuit of order, determination, eternity, and mathematical proof. For the study of "universal mathematics", some scholars in China focus on the research. In the translation of "universal mathematics", the difference between "universal mathematics" and "universal method" was explored, and some scholars put Descartes's mathematical thought in the history of modern western philosophy to make a comprehensive consideration. Foreign studies mainly focused on the specific mathematical problems in Descartes's mathematical thought; and some scholars paid attention to the emergence of "universal mathematics". According to the relevant literature at home and abroad, the author finds that there is no systematic study of Cartesian "universal mathematics", so this is the original intention of this article. First of all, the first chapter of this article is to investigate the background of the times of the flute Carle. The growth environment and educational background provide the early preparation for Descartes's "universal mathematics" thought. The collision of religious thought, the attention of the church school to mathematics education, the freedom and opening of the growing environment all let Descartes be fascinated by the certainty and simplicity of mathematics. The second chapter discusses the ideological origin of "universal mathematics". Platon's knowable world and Augustin's "light of nature", to a certain extent, influenced the formation of Cartesian "universal mathematics", and the quantitative method of Galileo caused the outbreak of the scientific revolution, which led to the rise of scientism and the development of Philosophy in the direction of science and mathematics, all of which were " The third chapter discusses the ideological meaning of "universal mathematics". The first "universal mathematics" is discussed in the third chapter. The first word "universal mathematics" appears in the text, what is the explanation of the "general mathematics", and how the relevant fields such as the analytical mathematics and the later physics and mathematics that Descartes engaged in earlier are "universal." The fourth chapter focuses on the most controversial, the text of the word "universal mathematics", "the guiding principle of seeking truth", the problem of the isomerism of the fourth principles, which directly indicates that Descartes was in a different two period when writing the text, and the two period of the key was just a good explanation of the Cartesian card. The whole process of the idea of "universal mathematics" from early embryonic form to practical application. This has a great effect on the overall grasp of "universal mathematics". This article explains Descartes's "universal mathematics" thought, hoping to systematically understand the ideological meaning of "universal mathematics". "Universal mathematics" is in the near future. The history of philosophy and the history of mathematics have had a profound impact. This aspect has not been discussed in detail, and the relevant contents need further study.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O1-0

【參考文獻(xiàn)】

相關(guān)期刊論文 前2條

1 肖志紅;;笛卡爾哲學(xué)思想的本體論語(yǔ)言哲學(xué)解讀[J];外語(yǔ)學(xué)刊;2013年03期

2 賈江鴻;;笛卡爾的“mathesis universalis”與形而上學(xué)[J];世界哲學(xué);2007年05期

相關(guān)碩士學(xué)位論文 前1條

1 韓盈盈;笛卡爾哲學(xué)的方法論與形而上學(xué)的重建[D];延安大學(xué);2012年

,

本文編號(hào):1952045

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1952045.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)7ce2a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com