到復(fù)射影空間的全純映射及亞純映射的正規(guī)性和值分布
發(fā)布時(shí)間:2018-05-24 19:40
本文選題:復(fù)射影空間 + 全純映射 ; 參考:《華東師范大學(xué)》2016年博士論文
【摘要】:本文旨在研究到復(fù)射影空間pN(C)的多復(fù)變?nèi)冇成浠騺喖冇成涞恼?guī)性和值分布,得到一些新的定理,推廣和改進(jìn)了已有的結(jié)果.首先,在第三章中研究了涉及分擔(dān)超曲面的多復(fù)變?nèi)冇成湔?guī)族.得到兩個(gè)相關(guān)正規(guī)定則,其一表明一族全純映射兩兩分擔(dān)2t+1個(gè)處于t次一般位置的超平面便正規(guī);其二斷言?xún)勺迦冇成鋵?duì)應(yīng)兩兩分擔(dān)3t+1個(gè)處于t次一般位置的超曲面有相同的正規(guī)性,它們推廣了Montel定則等經(jīng)典結(jié)果,舉出例子說(shuō)明以上是兩種不同的問(wèn)題.在第四章,首次嘗試推廣關(guān)于導(dǎo)函數(shù)的正規(guī)族問(wèn)題,引入導(dǎo)曲線的概念,將W. Schwick關(guān)于亞純函數(shù)與其導(dǎo)數(shù)分擔(dān)值的正規(guī)定則推廣至全純映射與其導(dǎo)曲線分擔(dān)超平面的情形,回到亞純函數(shù),我們結(jié)果也改進(jìn)了原定理.而在第五章,考察多復(fù)變亞純映射族的正規(guī)性.應(yīng)用第三章中的結(jié)論減弱了H.Fujimoto亞純正規(guī)定則中的條件.舉例說(shuō)明全純曲線族亞純地正規(guī)未必正規(guī),因此提出M-正規(guī)的概念,并討論了三者間的關(guān)系.同時(shí)得到M-正規(guī)的一些充分條件.在第六章,研究了全純曲線的值分布問(wèn)題.運(yùn)用Fermat型函數(shù)方程的相關(guān)結(jié)果構(gòu)造例子說(shuō)明了對(duì)C到PNⅣ(C)的全純曲線,H. Cartan的截?cái)嘈偷诙径ɡ碇械淖罴呀財(cái)嗨绞荖.然后,研究了一類(lèi)具體的超曲面,給出一個(gè)代數(shù)非退化的全純曲線相交一個(gè)超曲面的第二基本定理.
[Abstract]:The purpose of this paper is to study the normality and value distribution of multicomplex complex Holomorphic mappings or meromorphic mappings in complex projective space pNX, and obtain some new theorems, which generalize and improve the existing results. Firstly, in chapter 3, we study the normal family of holomorphic mappings with multiple complex variables involving shared hypersurfaces. Two correlated normal rules are obtained. One is that a family of Holomorphic mappings share 2t and 1 hyperplane in the general position of t. Secondly, it is asserted that two classes of Holomorphic mappings share the same normality for pairwise 3t and 1 hypersurface in the general position of degree t. They generalize the classical results such as Montel's rule, and give examples to illustrate the above two different problems. In chapter 4, we first try to generalize the normal family problem about derivative function, introduce the concept of derivative curve, and extend the normal rule of W. Schwick on meromorphic function and its derivative to the case of Holomorphic mapping and its derivative sharing hyperplane. Back to meromorphic functions, our results also improve the original theorem. In the fifth chapter, we investigate the normality of meromorphic mapping families with multiple complex variables. The application of the conclusions in Chapter 3 weakens the conditions in the H.Fujimoto 's orthodox rule. An example is given to show that the family of Holomorphic curves is not normally normal, so the concept of M-normality is proposed and the relations among them are discussed. At the same time, some sufficient conditions of M-normal are obtained. In chapter 6, the value distribution of holomorphic curves is studied. An example of constructing the Fermat type function equation is given to show that the best truncation level in the second fundamental theorem of truncation type of H. Cartan for the Holomorphic curve from C to PN 鈪,
本文編號(hào):1930299
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1930299.html
最近更新
教材專(zhuān)著