利用奇異值分解的二階遞歸系統(tǒng)數(shù)值穩(wěn)定性方法
發(fā)布時間:2018-05-24 02:42
本文選題:Krawtchouk多項式 + Jacobsthal數(shù)列。 參考:《華僑大學學報(自然科學版)》2017年06期
【摘要】:為了簡便地解決二階遞歸系統(tǒng)的穩(wěn)定性問題,將二階遞歸系統(tǒng)轉(zhuǎn)變?yōu)槎A離散時變線性系統(tǒng),并討論遞歸系統(tǒng)的穩(wěn)定性.在二階離散線性時變系統(tǒng)穩(wěn)定性分析的基礎上,利用奇異值分解(SVD),將其轉(zhuǎn)化為參考信號(RS)系統(tǒng).提出一個新的離散時變線性系統(tǒng)不穩(wěn)定性的充分條件,并以離散正交Krawtchouk多項式與Jacobsthal數(shù)列遞歸式為主,討論并推導出其在Ⅱ,Ⅳ象限上的變化情況和新的不穩(wěn)定性判據(jù).仿真結果驗證了結論的準確性.
[Abstract]:In order to solve the stability problem of second-order recursive systems, the second-order recursive systems are transformed into second-order discrete time-varying linear systems, and the stability of recursive systems is discussed. Based on the stability analysis of the second order discrete linear time-varying system, the singular value decomposition (SVD) is used to transform it into a reference signal (RS) system. A new sufficient condition for the instability of discrete time-varying linear systems is proposed. Based on the discrete orthogonal Krawtchouk polynomials and Jacobsthal sequence recursion, the variation of the discrete orthogonal Krawtchouk polynomials and the new criteria of instability in the 鈪,
本文編號:1927371
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1927371.html
最近更新
教材專著