2-連通圖的修正的彩虹頂點(diǎn)連通數(shù)
發(fā)布時(shí)間:2018-05-11 06:34
本文選題:修正的彩虹頂點(diǎn)連通數(shù) + 彩虹頂點(diǎn)著色 ; 參考:《陜西師范大學(xué)學(xué)報(bào)(自然科學(xué)版)》2017年06期
【摘要】:路P稱(chēng)為修正的頂點(diǎn)彩虹路,如果P中所有的頂點(diǎn)著不同的顏色或者除端點(diǎn)外其余頂點(diǎn)著不同于端點(diǎn)的顏色。圖G稱(chēng)為是修正的彩虹頂點(diǎn)連通的,如果對(duì)于G的任意兩個(gè)頂點(diǎn)u和v,G都有一條修正的彩虹頂點(diǎn)u-v路。使圖G是修正的彩虹頂點(diǎn)連通圖的最小顏色數(shù)目k稱(chēng)為圖G的修正的彩虹連通數(shù),記做rvc*(G)。給出了2-連通圖G的修正的彩虹頂點(diǎn)連通數(shù)的一個(gè)上界,即rvc*(G)≤|n/2|+1。
[Abstract]:Path P is called the modified Vertex Rainbow Road if all vertices in P have different colors or the vertices are different from the endpoint except the endpoint. A graph G is called a modified rainbow vertex connected if for any two vertices u and VG of G there is a modified rainbow vertex u-v path. Let G be the minimum number of colors of a modified rainbow vertex connected graph k is the modified rainbow connectivity number of graph G. In this paper, we give an upper bound of the connected number of the modified rainbow vertices of a 2-connected graph G, that is, rvcn (G) 鈮,
本文編號(hào):1872821
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1872821.html
最近更新
教材專(zhuān)著