天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

基于多目標(biāo)多樣性回聲狀態(tài)網(wǎng)絡(luò)的時間序列分析

發(fā)布時間:2018-05-06 09:07

  本文選題:時間序列預(yù)測 + 回聲狀態(tài)網(wǎng)絡(luò) ; 參考:《中國科學(xué)技術(shù)大學(xué)》2017年碩士論文


【摘要】:時間序列數(shù)據(jù)廣泛存在于電子商務(wù),金融,視頻活動分析等任務(wù)中,針對時序數(shù)據(jù)的分析和預(yù)測是一項十分重要且有挑戰(zhàn)性的工作。對時間序列分析的難點有二,其一是:時間序列數(shù)據(jù)具有時序性。其二是:時間序列數(shù)據(jù)通常包含較多的噪聲;芈暊顟B(tài)網(wǎng)絡(luò)(Echo State Network,ESN)是目前一種流行的時間序列分析模型,它的儲蓄池(相當(dāng)于傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的隱藏層)的循環(huán)連接使其具有一定的"記憶"能力,可以很好地擬合出時間序列數(shù)據(jù)的時序關(guān)系。由于回聲狀態(tài)網(wǎng)絡(luò)儲蓄池中的節(jié)點個數(shù)較多,當(dāng)它被用來擬合噪聲較多的數(shù)據(jù)時,容易造成過擬合,影響模型的預(yù)測能力。傳統(tǒng)ESN模型中,ESN輸入層到儲蓄池、儲蓄池內(nèi)部節(jié)點之間連接權(quán)重隨機生成,ESN的性能依賴于這種隨機性,導(dǎo)致它具有不穩(wěn)定性。為了得到合適的ESN,通常需要不斷地隨機生成ESN,直到產(chǎn)生合適模型為止,傳統(tǒng)方法無法保證新生成的ESN優(yōu)于之前的ESN;诨芈暊顟B(tài)網(wǎng)絡(luò)的上述缺點,本文提出了多目標(biāo)多樣性回聲狀態(tài)網(wǎng)絡(luò)(Multi-objective Diversified Echo State Network,MODESN),MODESN 定義了 ESN 多樣性。ESN 多樣性通過考慮儲蓄池中節(jié)點之間的冗余度,從而盡可能地避免過擬合情況發(fā)生。MODESN利用多目標(biāo)遺傳算法同時對ESN多樣性和預(yù)測準(zhǔn)確率進行優(yōu)化,使得新生成的ESN模型向期望的方向演化,從而避免了傳統(tǒng)生成ESN方法的隨機性。本文的主要工作可以總結(jié)如下:(1)本文定義了 ESN多樣性,通過優(yōu)化ESN多樣來優(yōu)化ESN結(jié)構(gòu),從而盡可能避免過擬合。(2)本文改進了一種多目標(biāo)遺傳算法,并用其對ESN多樣性和預(yù)測準(zhǔn)確率同時進行優(yōu)化,規(guī)范了 ESN演化方向。(3)本文將日本蠟燭圖技術(shù)與MODESN模型結(jié)合,降低了特征數(shù)量,避免引入不必要的噪聲。
[Abstract]:Time series data are widely used in e-commerce, finance, video activity analysis and other tasks. The analysis and prediction of time series data is a very important and challenging task. There are two difficulties in time series analysis. One is that the time series data are temporal. The second is that time series data usually contain more noise. Echo State Network (ESN) is a popular time series analysis model. Its storage pool (equivalent to the hidden layer of the traditional neural network) is cyclically connected to enable it to have a certain "memory" capability. The temporal relationship of time series data can be fitted well. Because of the large number of nodes in the echo state network savings pool, when it is used to fit the noisy data, it is easy to cause over-fitting, which affects the prediction ability of the model. In the traditional ESN model, the performance of randomly generating the ESN input layer from the input layer to the savings pool is dependent on this randomness, which leads to its instability. In order to obtain a suitable ESNs, it is usually necessary to generate them at random until the appropriate models are generated. The traditional method can not guarantee that the newly generated ESN is superior to the previous ones. Based on the above disadvantages of echo state network, this paper proposes a multi-objective Diversified Echo State network named Multi-objective Diversified Echo State Network / MODESN which defines ESN diversity by considering the redundancy between nodes in the storage pool. In order to avoid overfitting as far as possible. MODESN optimizes the diversity and prediction accuracy of ESN using multi-objective genetic algorithm at the same time, so that the newly generated ESN model evolves in the desired direction. Thus, the randomness of the traditional ESN generation method is avoided. The main work of this paper can be summarized as follows: 1) this paper defines the diversity of ESN, optimizes the structure of ESN by optimizing the diversity of ESN, and avoids overfitting. 2) this paper improves a multi-objective genetic algorithm. In this paper, we combine the Japanese candle chart technology with the MODESN model to reduce the number of features and avoid the introduction of unnecessary noise by optimizing the diversity and prediction accuracy of ESN at the same time, and standardizing the evolution direction of ESN.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O211.61

【參考文獻】

相關(guān)期刊論文 前3條

1 張屹;盧超;張虎;方子帆;;基于差分元胞多目標(biāo)遺傳算法的車間布局優(yōu)化[J];計算機集成制造系統(tǒng);2013年04期

2 尹安東;趙韓;楊亞娟;馮瑞;;多目標(biāo)遺傳算法的混合動力傳動系參數(shù)優(yōu)化[J];中國機械工程;2013年04期

3 李楠;王明輝;馬書根;李斌;王越超;;基于多目標(biāo)遺傳算法的水陸兩棲可變形機器人結(jié)構(gòu)參數(shù)設(shè)計方法[J];機械工程學(xué)報;2012年17期

,

本文編號:1851691

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1851691.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3d533***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com