幾類樹的獨立多項式的對數(shù)凹性
本文選題:樹 + 單峰性 ; 參考:《江蘇師范大學(xué)》2017年碩士論文
【摘要】:圖的獨立多項式是代數(shù)圖論研究中的一個重要組成部分,對其單峰型性質(zhì)的研究是代數(shù)圖論中的一個熱點問題.1987年,Erd?os等人猜想任意一棵樹或者森林的獨立多項式都是單峰的.這個猜想吸引了許多圖論研究者的興趣,雖然已取得了部分進展,但是至今仍未解決.本文通過對獨立多項式進行因式分解,將復(fù)合圖的獨立多項式分解為幾個多項式因子的乘積來研究,進而證明復(fù)合圖的獨立多項式的對數(shù)凹性,從而為Erd?os等人的上述猜想,提供了更多的例子.具體內(nèi)容如下:第一章圖論的基本概念以及獨立多項式的已知結(jié)果.第二章本章仿照蜈蚣圖,定義了新的復(fù)合圖,取名為廣義蜈蚣圖.通過求解遞推關(guān)系式,給出了其獨立多項式的顯式表達.進一步,考慮了樹圖中三類特殊的廣義蜈蚣圖,并證明了它們的獨立多項式都是對數(shù)凹的,從而是單峰的.第三章本章定義了一類樹,取名為雙燈樹.利用某類無爪圖,給出了雙燈樹的獨立多項式的表達式,并證明了其僅有實零點,從而是對數(shù)凹和單峰的.第四章總結(jié)。
[Abstract]:The independent polynomial of a graph is an important part in the study of algebraic graph theory, and the study of its unimodal property is a hot issue in the theory of algebraic graph. In 1987, Erdfos et al assumed that the independent polynomial of any tree or forest is unimodal. This conjecture has attracted the interest of many graph theorists. Although some progress has been made, it has not been solved. In this paper, by factorizing independent polynomials, the independent polynomials of complex graphs are decomposed into the product of several polynomial factors, and the logarithmic concave of independent polynomials of composite graphs is proved, which is the conjecture of Erd?os et al. More examples are provided. The main contents are as follows: the first chapter is the basic concept of graph theory and the known results of independent polynomials. In the second chapter, a new compound graph is defined, named the generalized centipede graph, following the centipede graph. The explicit expression of its independent polynomial is given by solving the recursive relation. Furthermore, three special generalized centipede graphs in tree graphs are considered, and it is proved that their independent polynomials are logarithmic concave and thus unimodal. The third chapter defines a kind of tree, named double lamp tree. In this paper, we give the expression of independent polynomial of double lamp tree by using some kind of claw free graph, and prove that it has only real zero point, so it is logarithmic concave and unimodal. Chapter IV Summary.
【學(xué)位授予單位】:江蘇師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O157.5
【相似文獻】
相關(guān)期刊論文 前7條
1 王可成;論(1-2~(1-r))ζ(r)的對數(shù)凹性[J];長沙交通學(xué)院學(xué)報;1998年02期
2 吳禮斌,褚仁華;含參數(shù)函數(shù)的凹性及其應(yīng)用[J];淮北煤炭師范學(xué)院學(xué)報(自然科學(xué)版);2004年01期
3 任歡;;一類隨機微分效用的凹性[J];科技信息;2010年11期
4 李社環(huán);關(guān)于局部有界LVS凹性模的一點注記[J];湘潭大學(xué)自然科學(xué)學(xué)報;1983年02期
5 王毅,趙立中;Simion猜想和對數(shù)凹性[J];數(shù)學(xué)學(xué)報;2004年03期
6 王善雄;;Fan Ky凹性定理的證明和推廣[J];大學(xué)數(shù)學(xué);2006年03期
7 ;[J];;年期
相關(guān)會議論文 前1條
1 陳學(xué)峰;;基于數(shù)值模擬的車門抗凹性分析[A];第五屆中國CAE工程分析技術(shù)年會論文集[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 夏先偉;Boros-Moll序列的組合性質(zhì)[D];南開大學(xué);2010年
相關(guān)碩士學(xué)位論文 前1條
1 陳云;幾類樹的獨立多項式的對數(shù)凹性[D];江蘇師范大學(xué);2017年
,本文編號:1788216
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1788216.html