廣義Halin圖的競(jìng)爭(zhēng)數(shù)
發(fā)布時(shí)間:2018-04-22 05:05
本文選題:競(jìng)爭(zhēng)圖 + 競(jìng)爭(zhēng)數(shù); 參考:《石家莊學(xué)院學(xué)報(bào)》2017年03期
【摘要】:對(duì)于任意圖G,G并上足夠多的孤立頂點(diǎn)就為某個(gè)無圈有向圖的競(jìng)爭(zhēng)圖.這樣加進(jìn)來的孤立頂點(diǎn)的最少個(gè)數(shù)稱為圖G的競(jìng)爭(zhēng)數(shù),記作k(G).一般來說計(jì)算圖的競(jìng)爭(zhēng)數(shù)是比較困難的,并且通過計(jì)算圖的競(jìng)爭(zhēng)數(shù)來刻畫圖已成為研究競(jìng)爭(zhēng)圖理論的一個(gè)重要內(nèi)容.廣義Halin圖包括一個(gè)樹的平面嵌入和一個(gè)連接樹的葉子的圈.針對(duì)廣義Halin圖進(jìn)行研究,確定了廣義Halin圖的競(jìng)爭(zhēng)數(shù).
[Abstract]:For any graph G G and sufficient isolated vertices, it is a competitive graph of an acyclic digraph. The minimum number of isolated vertices added in is called the competition number of graph G. Generally speaking, it is difficult to calculate the competition number of graph, and it has become an important content to study the competition graph theory by calculating the competition number of graph. The generalized Halin graph includes the planar embedding of a tree and a circle of leaves connected to the tree. The competition number of generalized Halin graph is determined by studying the generalized Halin graph.
【作者單位】: 石家莊學(xué)院理學(xué)院;
【基金】:河北省自然科學(xué)基金(A2015106045)
【分類號(hào)】:O157.5
,
本文編號(hào):1785703
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1785703.html
最近更新
教材專著