一類Gelfand-Kirilov維數(shù)為3的廣義Weyl代數(shù)的同調(diào)光滑性
本文選題:廣義 + Weyl代數(shù); 參考:《揚州大學(xué)》2017年碩士論文
【摘要】:同調(diào)光滑性是關(guān)于結(jié)合代數(shù)的一種同調(diào)性質(zhì).作為交換意義下光滑性的非交換版本,同調(diào)光滑性在非交換代數(shù)幾何,量子群,算子代數(shù),數(shù)學(xué)物理等數(shù)學(xué)領(lǐng)域都扮演著重要角色.許多同調(diào)光滑代數(shù)的Hochschild同調(diào)與上同調(diào)具有對偶性,亦即Van den Bergh對偶.一般而言,判斷一個代數(shù)是否同調(diào)光滑是困難的.本論文研究了一類Gelfand-Kirilov維數(shù)為3的廣義Weyl代數(shù)的同調(diào)光滑性.廣義Weyl代數(shù)的概念是Bavula于1992年引入的,目的是研究一些類似于經(jīng)典Weyl代數(shù)的代數(shù).本文所討論的廣義Weyl代數(shù)取,以二元多項式環(huán)k[z1,z2]為子代數(shù),由兩個參數(shù)σ和φ決定,其中σ是代數(shù)k[z1,z2]的一個仿射型自同構(gòu),φ=φ(z_1,z_2)是一個非零的二元多項式.通過構(gòu)造W的同倫雙復(fù)形,我們首先得到了 W作為We-模的一個投射分解,然后找出了 W具有同調(diào)光滑性的一個充分條件.更準(zhǔn)確地說,我們證明了:若φ,αφ/αz1,αφ/αz2生成的理想就等于k[z1,z2]本身,則W是同調(diào)光滑的.作為上述結(jié)論的應(yīng)用,我們證明了量子群Oq(SL2)和U(sl2)都是同調(diào)光滑代數(shù),這與K.A.Brown,J.J.Zhang在2008年取得的一個結(jié)果相吻合;還研究了陳惠香于1999年定義的代數(shù)M(1,q),證明M(1,q)模去一個正規(guī)正則元生成的主理想所得的商代數(shù)也是同調(diào)光滑的.文章的最后部分給出了與上述結(jié)論相關(guān)的一些前景和展望.
[Abstract]:Homology smoothness is a homology property of associative algebra. As a non-commutative version of smoothness in the sense of commutative homology smoothness plays an important role in the fields of noncommutative algebraic geometry quantum group operator algebra mathematical physics and so on. The Hochschild homology and cohomology of many homology smooth algebras are duality, that is, Van den Bergh duality. Generally speaking, it is difficult to judge whether an algebra is homology smooth. In this paper, we study the homology smoothness of a class of generalized Weyl algebras with Gelfand-Kirilov dimension 3. The concept of generalized Weyl algebra was introduced by Bavula in 1992 in order to study some algebras similar to classical Weyl algebras. The generalized Weyl algebra discussed in this paper takes the bivariate polynomial ring k [z1z2] as a subalgebra and is determined by two parameters 蟽 and 蠁, where 蟽 is an affine automorphism of the algebra k [z1z2], 蠁 = 蠁 z1zst2) is a nonzero binary polynomial. By constructing a homotopy bicomplex of W, we first obtain a projective decomposition of W as a We-module, and then find a sufficient condition for W to have homological smoothness. More accurately, we prove that if the ideal generated by 蠁, 偽 蠁 / 偽 z 1, 偽 蠁 / 偽 z 2 is equal to k [z 1z2] itself, then W is homologically smooth. As an application of the above conclusions, we prove that both the quantum group Oqn SL2) and Uttril 2) are homology smooth algebras, which is in agreement with a result obtained by K.A. Brownberg J. J. Zhang in 2008. In this paper, we also study the algebra M ~ (1) Q ~ (1) defined by Chen Huixiang in 1999, and prove that the quotient number of the principal ideal generated by M _ (1) Q _ () module is also homologically smooth. The last part of the paper gives some prospects and prospects related to the above conclusions.
【學(xué)位授予單位】:揚州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O153
【相似文獻】
相關(guān)期刊論文 前10條
1 陳利國;陸源;;局部凸空間k-強光滑性與k-非常光滑性的等價刻畫[J];內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版);2012年02期
2 張子厚;(S)性質(zhì)和局部接近一致光滑空間[J];南京廣播電視大學(xué)學(xué)報;1997年02期
3 方習(xí)年;關(guān)于k-致亞光滑性與k-致光滑性[J];安徽機電學(xué)院學(xué)報;1999年04期
4 關(guān)履泰,洪東,吳愛弟;正交四重小波的收斂性與光滑性[J];工程數(shù)學(xué)學(xué)報;2001年02期
5 林清泉;倒向隨機微分方程解的光滑性[J];數(shù)學(xué)物理學(xué)報;2004年01期
6 郭自蘭,張長春;可畫出曲線的光滑性[J];河北大學(xué)學(xué)報(自然科學(xué)版);2003年03期
7 傅俊義;;范數(shù)一致光滑性的一個特征[J];南昌大學(xué)學(xué)報(理科版);2006年03期
8 陳利國;;局部凸空間k-強光滑性與k-非常光滑性的進一步探討[J];集寧師專學(xué)報;2011年04期
9 李落清 ,楊汝月;正方形上的Bernstein多項式的導(dǎo)數(shù)與函數(shù)的光滑性[J];寧夏大學(xué)學(xué)報(自然科學(xué)版);1989年03期
10 南朝勛,王建華;k-嚴(yán)格凸性與k-光滑性[J];數(shù)學(xué)年刊A輯(中文版);1990年03期
相關(guān)會議論文 前1條
1 任佳剛;;橢圓擴散過程停時的光滑性[A];面向21世紀(jì)的科技進步與社會經(jīng)濟發(fā)展(上冊)[C];1999年
相關(guān)碩士學(xué)位論文 前10條
1 富文U,
本文編號:1777646
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1777646.html