頁(yè)巖氣和天然氣的區(qū)別_頁(yè)巖氣滲流數(shù)學(xué)模型
本文關(guān)鍵詞:頁(yè)巖氣滲流數(shù)學(xué)模型,由筆耕文化傳播整理發(fā)布。
評(píng) 述
誤差.
(ⅳ) 裂縫中解吸附過(guò)程對(duì)頁(yè)巖氣產(chǎn)量的影響. 本文中基質(zhì)采用了非平衡解吸附理論, 而裂縫則采用平衡態(tài)(也即瞬時(shí))解吸附模型進(jìn)行模擬. 對(duì)比不考慮裂縫中的解吸附過(guò)程計(jì)算的累積產(chǎn)量, 結(jié)果如圖
14所示. 可以看出人工裂縫內(nèi)解吸附過(guò)程對(duì)頁(yè)巖氣產(chǎn)量幾乎沒(méi)有影響: 生產(chǎn)150天后考慮人工裂縫內(nèi)解吸附過(guò)程的累計(jì)產(chǎn)量為153492.9 m3, 不考慮人工裂縫內(nèi)解吸附過(guò)程的累計(jì)產(chǎn)量為153490.2 m3, 相差僅為2.7 m3, 這說(shuō)明人工裂縫內(nèi)的吸附氣量并不多(人工裂縫的容積本身很小), 所以人工裂縫內(nèi)的解吸附過(guò)程可以忽略.
圖14 (網(wǎng)絡(luò)版彩色)人工裂縫內(nèi)解吸附過(guò)程對(duì)頁(yè)巖氣產(chǎn)量的影響 Figure 14 (Color online) Impact of desorption process in hydraulic fracture on shale gas production
5 結(jié)論
針對(duì)頁(yè)巖氣滲流機(jī)理復(fù)雜的特點(diǎn), 綜合考慮了自由氣的黏性流動(dòng)、Knudsen擴(kuò)散、滑脫流和吸附氣的表面擴(kuò)散以及巖石變形引起的吸附氣滑移, 建立了頁(yè)巖氣滲流數(shù)學(xué)模型, 采用非線(xiàn)性非平衡Langmuir吸附理論分析了滲流過(guò)程中的解吸附機(jī)理. 通過(guò)數(shù)值模擬, 得到以下結(jié)論:
自由氣的黏性流動(dòng)與Knudsen擴(kuò)散主導(dǎo)頁(yè)巖氣產(chǎn)量, 無(wú)因次變量既可分析主導(dǎo)流動(dòng)機(jī)制, 也可計(jì)算等效滲透率.
(3) 非平衡解吸附過(guò)程相較于傳統(tǒng)瞬時(shí)解吸附理論, 會(huì)降低頁(yè)巖氣產(chǎn)量, 解吸附速率越慢, 頁(yè)巖氣產(chǎn)量越低.
(4) 由于人工裂縫容積有限, 在模擬多級(jí)壓裂水平井頁(yè)巖氣產(chǎn)量時(shí)可以忽略人工裂縫中的解吸附過(guò)程.
(1) 頁(yè)巖氣在原始儲(chǔ)層條件下幾乎不流動(dòng), 在多級(jí)壓裂水平井的產(chǎn)能計(jì)算中, 可以只考慮SRV區(qū)域內(nèi)氣體的流動(dòng).
(5) 建立的數(shù)學(xué)模型能夠分析自由氣、吸附氣以及凈解吸附速率在生產(chǎn)過(guò)程中的時(shí)空分布規(guī)律, 為多級(jí)壓裂水平井中頁(yè)巖氣的滲流問(wèn)題提供了科學(xué)
(2) 數(shù)值模擬結(jié)果顯示, 吸附氣的表面擴(kuò)散與滑
移對(duì)頁(yè)巖氣產(chǎn)量的影響均在0.1%以下,
可以忽略
.
基礎(chǔ).
參考文獻(xiàn)
1 Yao J, Sun H, Huang Z Q, et al. Key mechanical problems in the development of shale gas reservoirs (in Chinese). Sci Sin-Phys Mech Astron, 2013, 43: 1527–1547 [姚軍, 孫海, 黃朝琴, 等. 頁(yè)巖氣藏開(kāi)發(fā)中的關(guān)鍵力學(xué)問(wèn)題. 中國(guó)科學(xué): 物理學(xué) 力學(xué) 天文學(xué), 2013, 43: 1527–1547]
2 Tang Y, Tang X, Wang G Y, et al. Summary of hydraulic fracturing technology in shale gas development (in Chinese). Geol Bull China, 2011, 30: 393–399 [唐穎, 唐玄, 王廣源, 等. 頁(yè)巖氣開(kāi)發(fā)水力壓裂技術(shù)綜述. 地質(zhì)通報(bào), 2011, 30: 393–399]
3 Guo C, Wei M, Chen H, et al. Improved numerical simulation for shale gas reservoirs. In: Offshore Technology Conference Asia, Kuala Lumpur, 2014
4 Javadpour F, Fisher D, Unsworth M. Nanoscale gas flow in shale gas sediments. J Can Petrol Technol, 2007, 46: 55–61
5 Freeman C M, Moridis G, Llk D, et al. A numerical study of performance for tight gas and shale gas reservoir systems. J Petrol Sci Eng, 2013, 108: 22–39
6 Kast W, Hohenthanner C R. Mass transfer within the gas-phase of porous media. Int J Heat Mass Tran, 2000, 43: 807–823
7 Guo J J, Zhang L H, Wang H T, et al. Pressure transient analysis for multi-stage fractured horizontal wells in shale gas reservoirs. Transp Porous Med, 2012, 93: 635–653
8 Nobakht M, Clarkson C R, Kaviani D. New type curves for analyzing horizontal well with multiple fractures in shale gas reservoirs. J Nat Gas Sci Eng, 2013, 10: 99–112
9 Zhao Y L, Zhang L H, Zhao J Z, et al. “Triple porosity” modeling of transient well test and rate decline analysis for multi-fractured hori-zontal well in shale gas reservoirs. J Petrol Sci Eng, 2013, 110: 253–262
2269
2015年8月 第60卷 第24期
10 Yu W, Sepehrnoori K. Numerical evaluation of the impact of geomechanics on well performance in shale gas reservoirs. In: 47th US Rock
Mechanics/Genomechanics Symposium, San Francisco, 2013
11 Huang J, Ghassemi A. Poroelastic analysis of gas production from shale. In: 47th US Rock Mechanics/Genomechanics Symposium, San
Francisco, 2011
12 Mongalvy V, Chaput E, Agarwal S, et al. A new numerical methodology for shale reservoir performance evaluation. In: SPE North
American Unconventional Gas Conference and Exhibition, Woodlands, 2011
13 Srinivasan R, Auvil S R, Schork J M. Mass transfer in Carbon molecular sieves-an interpretation of Langmuir kinetics. The Chem Eng J,
1995, 57: 137–144
14 Do D D, Wang K. A new model for the description of adsorption kinetics in heterogeneous activated carbon. Carbon, 1998, 36:
1539–1554
15 Nikolai S, Wolf K A A, Bruining J. Interpretation of carbon dioxide diffusion behavior in coals. Int J Coal Geol, 2007, 72: 315–324 16 Jin Y, Chen M. Wellbore Stability Mechanics (in Chinese). Beijing: Science Press, 2012 [金衍, 陳勉. 井壁穩(wěn)定力學(xué). 北京: 科學(xué)出版
社, 2012]
17 Zhang H, Liu J, Elsworth D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. Int J Rock Mech
Min, 2008, 45: 1226–1236
18 Warren J E, Root P J. The behavior of naturally fractured reservoirs. Soc Pet Eng J, 1963, 3: 245–255
19 Zhang Y T. Rock Hydraulics and Engineering (in Chinese). Beijing: China Water Power Press, 2005 [張有天. 巖石水力學(xué)與工程. 北
京: 中國(guó)水利水電出版社, 2005]
20 Xia Y, Jin Y, Chen M, et al. Hydrodynamic modeling of mud loss controlled by the coupling of discrete fracture and matrix. J Petrol Sci
Eng, 2014, doi:10.1016/j.petrol.2014.07.026
21 Biryukov D, Kuchuk F J. Transient pressure behavior of reservoirs with discrete conductive faults and fractures. Transp Porous Med,
2012, 95: 239–268
22 Chen M, Jin Y, Zhang G Q. Rock Mechanics in Petroleum Engineering (in Chinese). Beijing: Science Press, 2008 [陳勉, 金衍, 張廣清.
石油工程巖石力學(xué). 北京: 科學(xué)出版社, 2008]
23 Cui X, Bustin R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams.
AAPG Bull, 2005, 89: 181–202
24 Harpalani S, Schraufnagel A. Measurement of parameters impacting methane recovery from coal seams. Int J Min Geol Eng, 1990, 28:
369–384
25 Robertson E P, Christiansen R L. Modeling permeability in coal using sorption-induced strain data. In: SPE Annual Technical Conference
and Exhibition, Dallas, 2005
26 Bello R O, Wattenbarger R A. Multi-stage hydraulically fractured shale gas rate transient analysis. In: SPE North Africa Technical Con-ference and Exhibition, Cairo, 2010
27 Stalgorova E, Mattar L. Practical analytical model to simulate production of horizontal wells with branch fractures. In: SPE Canadian
Unconventional Resources Conference, Calgary, 2012
28 Stalgorova E, Mattar L. Analytical model for history matching and forecasting production in multifrac composite systems. In: SPE Cana-dian Unconventional Resources Conference, Calgary, 2012
29 Brohi I, Mehran P D, Roberto A. Modeling fractured horizontal wells as dual porosity composite reservoirs—Application to tight gas,
shale gas and tight oil cases. In: SPE Western North American Regional Meeting, Anchorage, 2011
30 Ozkan E, Raghavan R. New solutions for well-test-analysis problems: Part 1—Analytical considerations. SPE Formation Evaluation,
1991, 6: 359–368
31 Ozkan E, Raghavan R. New solutions for well-test-analysis Problems: Part 2—Computational considerations and applications. SPE For-mation Evaluation, 1991, 6: 369–378
32 Ozkan E, Raghavan R. New solutions for well-test-analysis problems: Part 3—Additional algorithms. In: SPE Annual Tech Conf Exhibit,
1994, doi.org/10.2118/28424-MS
33 Guo J J, Zhang L H, Wang H T, et al. Pressure transient analysis for multi-stage fractured horizontal wells in shale gas reservoirs. Transp
Porous Med, 2012, 93: 635–653
2270
評(píng) 述
Gas flow in shale reservoirs
XIA Yang1, JIN Yan1, CHEN Mian1 & CHEN KangPing1,2
1 2
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe AZ 85287-6101, USA
This study incorporates various gas transport mechanisms in shale nanopores with nonlinear and non-equilibrium gas adsorption- desorption kinetics. We formulate a simplified model for matrix and hydraulic fractures to study the dynamic production performance of multi-stage fractured horizontal wells in shale gas reservoirs. The gas transport mechanisms include viscous flow, Knudsen diffusion of free gas, surface diffusion, and slippage of adsorbed gas whilerock deformation is coupled in the flow equations. The sensitivity of the production rate to key physical parameters is examined through numerical simulation. Our results indicate that the viscous flow and Knudsen diffusion dominate the production of shale gas. The production rate was sensitive to the desorption rate while largely unaffected by the surface diffusion and slippage of the adsorbed gas, given that the transport process of adsorbed gas is a much slower process than the diffusion of free gas.
shale gas, flow mechanism, non-equilibrium desorption, numerical simulation
doi: 10.1360/N972014-01175
2271
本文關(guān)鍵詞:頁(yè)巖氣滲流數(shù)學(xué)模型,由筆耕文化傳播整理發(fā)布。
,本文編號(hào):171858
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/171858.html