天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

時(shí)標(biāo)上兩類帶有p-Laplacian算子的多點(diǎn)邊值問(wèn)題解的存在性

發(fā)布時(shí)間:2018-03-25 20:25

  本文選題:時(shí)標(biāo) 切入點(diǎn):p-Laplacian算子 出處:《延邊大學(xué)》2016年碩士論文


【摘要】:1988年Stefan-Hilger提出了時(shí)標(biāo)上的動(dòng)力方程理論。在時(shí)標(biāo)理論沒(méi)有出現(xiàn)之前,對(duì)于一些連續(xù)變化的現(xiàn)象或者連續(xù)的變化過(guò)程可以用微分方程去刻畫(huà);對(duì)于某些離散的現(xiàn)象或者變化過(guò)程,則用差分方程去刻畫(huà)。但對(duì)于一些既包括連續(xù)狀態(tài)又包括離散狀態(tài)的數(shù)學(xué)模型卻無(wú)從下手,時(shí)標(biāo)理論提供給我們一種新的方法,去研究實(shí)際生活中許多沒(méi)有規(guī)律的現(xiàn)象,所以時(shí)標(biāo)理論的出現(xiàn),引起了眾多學(xué)者的關(guān)注和研究。時(shí)標(biāo)上的相關(guān)理論發(fā)展速度很快,并且在不斷的趨于成熟。時(shí)標(biāo)上邊值問(wèn)題解的存在性就是眾多學(xué)者關(guān)注的問(wèn)題之一。眾多學(xué)者的證明方法也多種多樣,例如:錐上不動(dòng)點(diǎn)定理、單調(diào)迭代方法、上下解方法、Leggett-Williams不動(dòng)點(diǎn)定理,以及Leray-Schauder非線性選擇定理等。并且已經(jīng)得出了很多有價(jià)值的結(jié)論。通過(guò)閱讀大量的參考文獻(xiàn)可以發(fā)現(xiàn),到目前為止大部分的作者所研究的都是一階動(dòng)力學(xué)方程或者二階動(dòng)力學(xué)方程的解的存在性問(wèn)題,而對(duì)于時(shí)標(biāo)上的三階多點(diǎn)邊值問(wèn)題解的存在性的研究卻不多,自然對(duì)帶有P-Laplacian算子的三階多點(diǎn)邊值問(wèn)題解的存在性進(jìn)行研究的文章就更少了。本文主要是利用前人用過(guò)的定理去研究了時(shí)標(biāo)上兩類三階的帶有p-Laplacian算子的多點(diǎn)邊值問(wèn)題正解的存在性。對(duì)三階問(wèn)題的研究表面上增加了求方程解難度,實(shí)際上對(duì)時(shí)標(biāo)上高階邊值問(wèn)題的研究有助于我們更好地去解決生活中許多問(wèn)題,也變得更加有實(shí)用價(jià)值。對(duì)于第一個(gè)三階邊值問(wèn)題,我利用兩種辦法證明了其存在多重正解的充分條件。第一個(gè)方法是Leggett-Williams不動(dòng)點(diǎn)定理;第二個(gè)方法是一錐上不動(dòng)點(diǎn)定理。對(duì)于第二個(gè)三階多點(diǎn)邊值問(wèn)題,我利用Leray-Schauder非線性選擇定理,得出了其至少存在一個(gè)正解的充分條件。全文共分為五章,第一章是引言,簡(jiǎn)單的敘述了時(shí)標(biāo)理論的歷史背景、研究?jī)r(jià)值和我自己所做的一些主要工作;第二章是預(yù)備知識(shí),該部分詳細(xì)列出了論文證明過(guò)程中涉及的所有時(shí)標(biāo)理論上的定義和引理;第三章主要研究了如下三階的帶有p-Laplacian算子的多點(diǎn)邊值問(wèn)題首先,利用時(shí)標(biāo)上的相關(guān)理論及性質(zhì)解出該邊值問(wèn)題的解的表達(dá)式;其次,要對(duì)這個(gè)方程建立一個(gè)合適的Banach空間和適當(dāng)?shù)腻F,在錐上定義一個(gè)算子Q,然后利用Leggett-Williams不動(dòng)點(diǎn)定理和一個(gè)錐上的不動(dòng)點(diǎn)定理分別給出方程存在正解的充分條件;最后,我給出兩個(gè)實(shí)際例子說(shuō)明該部分的成果。第四章主要研究了帶有p-Laplacian算子的邊值問(wèn)題首先,利用時(shí)標(biāo)上相關(guān)理論及其性質(zhì)解出該問(wèn)題的解的表達(dá)式;其次,要對(duì)該方程建立一個(gè)合適的Banach空間和適當(dāng)?shù)腻F,在錐上定義一個(gè)算子R;然后利用Leray-schauder非線性選擇定理,得出了該邊值問(wèn)題至少存在一個(gè)正解的充分條件。最后一個(gè)章節(jié)是結(jié)束語(yǔ)以及參考文獻(xiàn)。
[Abstract]:In 1988, Stefan-Hilger put forward the theory of dynamic equation on time scale. Before the theory of time scale appeared, some phenomena of continuous change or continuous process of change can be described by differential equation, and for some discrete phenomena or processes of change, But for some mathematical models which include both continuous state and discrete state, time scale theory provides us with a new method to study many irregular phenomena in real life. Therefore, the emergence of time scale theory has attracted the attention and research of many scholars. The related theories on the time scale have developed rapidly. The existence of solutions to the boundary value problems over time scales is one of the problems that many scholars have paid close attention to. There are a variety of methods to prove these problems, such as fixed point theorems on cones, monotone iterative methods, etc. The methods of upper and lower solutions are Leggett-Williams fixed point theorem, Leray-Schauder nonlinear selection theorem, etc. And many valuable conclusions have been drawn. Up to now, most of the authors have studied the existence of solutions for first-order or second-order dynamical equations, but there are few studies on the existence of solutions for third-order multi-point boundary value problems on time scales. Naturally, there are few studies on the existence of solutions for third order multipoint boundary value problems with P-Laplacian operators. In this paper, we mainly use the theorems used by our predecessors to study the multipoint boundary values of two classes of third order p-Laplacian operators on time scales. The existence of positive solution of the problem. The study of the third order problem increases the difficulty of solving the equation on the surface. In fact, the study of higher-order boundary value problems on time scales helps us to solve many problems in life better and become more practical. For the first third-order boundary value problem, I have proved the sufficient conditions for the existence of multiple positive solutions by using two methods. The first method is the Leggett-Williams fixed point theorem; the second method is the fixed point theorem on a cone. For the second third order multipoint boundary value problem, I use the Leray-Schauder nonlinear selection theorem. A sufficient condition for the existence of at least one positive solution is obtained. The paper is divided into five chapters. The first chapter is an introduction, which briefly describes the historical background of the theory of time scale, the research value and some main works I have done; the second chapter is the preparatory knowledge. In this part, the theoretical definitions and Lemma of all the time scales involved in the process of proving are listed in detail. In chapter 3, the following third order multipoint boundary value problems with p-Laplacian operator are studied. The expression of the solution of the boundary value problem is obtained by using the relevant theories and properties on the time scale. Secondly, an appropriate Banach space and a proper cone are established for the equation. In this paper, we define an operator Q on a cone, then by using Leggett-Williams fixed point theorem and fixed point theorem on a cone, we give the sufficient conditions for the existence of positive solutions for the equation. I give two practical examples to illustrate the results of this part. In chapter four, we mainly study the boundary value problem with p-Laplacian operator. First, we solve the solution of the problem by using the theory of correlation on time scale and its properties. In order to establish an appropriate Banach space and a proper cone for the equation, an operator R is defined on the cone, and then the Leray-schauder nonlinear selection theorem is used. A sufficient condition for the existence of at least one positive solution for the boundary value problem is obtained. The last chapter is the conclusion and references.
【學(xué)位授予單位】:延邊大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:O175.8

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 任景莉;一類非線性多點(diǎn)邊值問(wèn)題正解的存在性[J];鄭州大學(xué)學(xué)報(bào)(理學(xué)版);2002年04期

2 馬巧珍;次線性半正多點(diǎn)邊值問(wèn)題的正解(英文)[J];蘭州大學(xué)學(xué)報(bào);2003年04期

3 薛春艷,葛渭高;共振條件下多點(diǎn)邊值問(wèn)題解的存在性[J];數(shù)學(xué)學(xué)報(bào);2005年02期

4 龍志文;;二階非線性多點(diǎn)邊值問(wèn)題多正解的存在性[J];湖南文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年01期

5 馬巧珍;杜睿娟;;半正多點(diǎn)邊值問(wèn)題正解的存在性[J];蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年05期

6 于淑妹;陳俊霞;;對(duì)一類多點(diǎn)邊值問(wèn)題的一點(diǎn)思考[J];平頂山學(xué)院學(xué)報(bào);2008年02期

7 劉丙鐲;車(chē)曉飛;;高階多點(diǎn)邊值問(wèn)題共振情況下正解的存在性[J];黑龍江科技學(xué)院學(xué)報(bào);2010年05期

8 楊劉;張衛(wèi)國(guó);劉錫平;;二階共振多點(diǎn)邊值問(wèn)題的正解[J];系統(tǒng)科學(xué)與數(shù)學(xué);2011年12期

9 張國(guó)偉;馬玉杰;;奇異多點(diǎn)邊值問(wèn)題的多個(gè)正解[J];東北大學(xué)學(xué)報(bào);2006年04期

10 林曉潔;杜增吉;葛渭高;;具共振條件下的高階多點(diǎn)邊值問(wèn)題解的存在性[J];應(yīng)用數(shù)學(xué)和力學(xué);2006年05期

相關(guān)博士學(xué)位論文 前4條

1 江衛(wèi)華;常微分方程多點(diǎn)邊值問(wèn)題的正解[D];河北師范大學(xué);2009年

2 牛晶;若干微分方程多點(diǎn)邊值問(wèn)題求解算法的研究[D];哈爾濱工業(yè)大學(xué);2012年

3 杜新生;非線性多點(diǎn)邊值問(wèn)題的正解及其應(yīng)用[D];曲阜師范大學(xué);2008年

4 賀強(qiáng);一類二階三點(diǎn)邊值問(wèn)題和拓?fù)渥饔煤瘮?shù)的研究[D];吉林大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 王培智;關(guān)于一類二階多點(diǎn)邊值問(wèn)題的解存在性的研究[D];吉林大學(xué);2009年

2 李艷楠;分?jǐn)?shù)階微分方程多點(diǎn)邊值問(wèn)題多正解的存在性[D];天津財(cái)經(jīng)大學(xué);2015年

3 李寶玲;時(shí)標(biāo)上兩類帶有p-Laplacian算子的多點(diǎn)邊值問(wèn)題解的存在性[D];延邊大學(xué);2016年

4 謝淳;幾類非線性多點(diǎn)邊值問(wèn)題解的存在性[D];湖南師范大學(xué);2009年

5 楊海艷;幾類常微分方程多點(diǎn)邊值問(wèn)題正解的存在性[D];中南大學(xué);2008年

6 羅利佳;兩類微分方程多點(diǎn)邊值問(wèn)題正解的存在性[D];華中科技大學(xué);2008年

7 熊傳霞;高階微分方程多點(diǎn)邊值問(wèn)題正解的存在性[D];華中科技大學(xué);2006年

8 高云柱;具共振條件下高階多點(diǎn)邊值問(wèn)題的可解性[D];北華大學(xué);2007年

9 肖億軍;幾類常微分方程多點(diǎn)邊值問(wèn)題解的存在性研究[D];中南大學(xué);2007年

10 田淑杰;非線性四階多點(diǎn)邊值問(wèn)題的正解[D];東北石油大學(xué);2012年



本文編號(hào):1664756

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1664756.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e2aa3***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com