航班撤輪擋里程碑時刻預測
本文選題:航班撤輪擋時刻預測 切入點:因子分析 出處:《中國民航大學》2017年碩士論文 論文類型:學位論文
【摘要】:航班撤輪擋時刻是所有艙門關(guān)閉,完成撤廊橋,推車可用,收到許可后立即推出的時刻,是航班進程監(jiān)控的重要里程碑事件,能指導空管提前預判航班預起飛隊列,以及機場和航空公司進行地面保障服務(wù)的重要時間節(jié)點。因此,航班撤輪擋時刻預測逐漸成為民航熱點研究問題,F(xiàn)有預測方法采取經(jīng)驗統(tǒng)計方法得到航班撤輪擋時刻,其核心思想是首先統(tǒng)計歷史數(shù)據(jù)得到平均最小過站時間,然后將預計降落時間、預計滑入時間和平均最小過站時間求和,以作為航班撤輪擋時刻的估計值。對于大型樞紐機場,不同的機型、航班時刻和地勤保障單位,航班過站時間有較大差異。因此,使用統(tǒng)一的過站時間預測航班撤輪擋時刻會產(chǎn)生較大誤差,影響機場、航空公司和空管的協(xié)同運行效率。針對此問題,本文開展航班撤輪擋時刻預測研究,創(chuàng)新性采用機器學習方法構(gòu)建航班撤輪擋時刻預測模型,而不再是歷史數(shù)據(jù)的估計。直觀上,可直接利用航班撤輪擋時刻的前序所有里程碑事件構(gòu)建多元線性回歸模型,但是不相關(guān)或弱關(guān)聯(lián)的里程碑事件會對航班撤輪擋時刻預測產(chǎn)生偏差。針對此問題,本文提出了一個基于因子分析的航班撤輪擋時刻預測模型。首先,開展航班里程碑事件的因子分析,分析各里程碑事件間的相關(guān)性,通過計算因子載荷、因子旋轉(zhuǎn)確定與航班撤輪擋時刻相關(guān)的關(guān)鍵里程碑事件。其次,將關(guān)鍵里程碑事件作為特征變量,利用多元線性回歸的方法建立預測模型。實驗表明,誤差范圍±5和±10分鐘內(nèi),模型平均預測準確率分別可達70%和90%以上,高于A-CDM經(jīng)驗方法、基于主成分分析和基于支持向量回歸(SVR)等航班撤輪擋時刻預測算法。由于基于因子分析的航班撤輪擋時刻預測模型本質(zhì)上是融入1L正則化約束的多元線性回歸問題。模型僅考慮前序里程碑事件對航班撤輪擋時刻的影響,忽略了航班登機口、天氣、車輛調(diào)度及機場是否處于繁忙時刻等諸多難以量化因素的間接影響,無法更準確地預測航班撤輪擋時刻。針對上述情況,本文提出一個基于隱藏變量的航班撤輪擋時刻預測模型,將上述無法量化因素的影響通過隱藏變量在模型中體現(xiàn)。在訓練階段,由于最大化數(shù)據(jù)似然概率的優(yōu)化目標耦合了模型參數(shù),導致傳統(tǒng)梯度上升等算法無法直接使用,為此采用變分EM算法求解模型參數(shù),其中期望計算旨在優(yōu)化求解近似分布的模型參數(shù),而期望最大則是最大化似然概率求解回歸預測模型參數(shù)。在基準數(shù)據(jù)集合上的實驗表明,該模型比基于因子分析的航班撤輪擋時刻預測模型能夠取得更好的均方誤差以及準確率。
[Abstract]:The departure time is the time when all the doors are closed, the bridge is removed, the trolley is available, and immediately after receiving the permission, it is an important milestone in the monitoring of the flight process. It can guide the air traffic control to predict the flight pre-departure queue in advance. And the important time node for the ground support service of the airport and the airline. Therefore, the prediction of the departure time of the flight is gradually becoming a hot research issue in civil aviation. The existing forecasting methods adopt the empirical statistical method to get the time of the flight withdrawal. Its core idea is to first get the average minimum transit time by statistics of historical data, and then sum up the estimated landing time, the expected slide in time and the average minimum stop time to be used as the estimated value of the departure time of the flight. For a large hub airport, Different aircraft types, flight times and ground handling support units, and flight transit times are quite different. Therefore, the use of unified transit time to predict the departure time of a flight will result in greater errors, which will affect the airport. Aiming at this problem, this paper develops the research on the prediction of flight withdrawal time, and innovatively uses machine learning method to construct the model of flight withdrawal time prediction. It is not the estimation of historical data. Intuitively, multiple linear regression models can be built directly by using all the milestone events in the pre-order of the departure time of the flight. However, irrelevant or weakly related milestone events can cause deviation to the prediction of the departure time. In order to solve this problem, this paper proposes a prediction model based on factor analysis. Carries on the factor analysis of the flight milestone event, analyzes the correlation between each milestone event, through the calculation factor load, the factor rotation determines the key milestone event related to the flight withdrawal time. Secondly, Taking the key milestone events as characteristic variables, the prediction model is established by using multiple linear regression method. The experimental results show that the average prediction accuracy of the model can reach more than 70% and 90% within 鹵5 and 鹵10 minutes, respectively, which is higher than that of A-CDM empirical method. Based on principal component analysis (PCA) and support vector regression (SVR) algorithm, the prediction model of flight withdrawal time is essentially a multivariate linear regression model with 1L regularization constraint. The model only considers the influence of the pre-order milestone event on the departure time of the flight. Ignoring the indirect effects of many difficult factors, such as flight gate, weather, vehicle scheduling and whether the airport is in busy hours, it is impossible to predict more accurately the departure time of the flight. In this paper, we propose a prediction model of flight withdrawal time based on hidden variables. The influence of the above unquantifiable factors is reflected in the model by hidden variables. Because the optimization objective of maximizing the likelihood probability of the data coupled the model parameters, the traditional gradient rise algorithm can not be used directly, so the variational EM algorithm is used to solve the model parameters. Among them, the expected calculation is aimed at optimizing the model parameters for solving approximate distribution, while the maximum expectation is to maximize the likelihood probability to solve the regression prediction model parameters. The experiments on the set of datum data show that, This model can obtain better mean square error and accuracy than the prediction model based on factor analysis.
【學位授予單位】:中國民航大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:V355;O212.1
【參考文獻】
相關(guān)期刊論文 前10條
1 羅謙;張永輝;程華;李川;;基于航空信息網(wǎng)絡(luò)的樞紐機場航班延誤預測模型[J];系統(tǒng)工程理論與實踐;2014年S1期
2 馬筠岷;;A-CDM機場協(xié)同決策的應用[J];現(xiàn)代電信科技;2014年05期
3 蔣翠俠;許啟發(fā);;再論線性回歸模型的最小二乘估計與線性方程組的解[J];統(tǒng)計與決策;2014年06期
4 韓忠明;呂濤;張慧;姜同強;;帶隱變量的回歸模型EM算法[J];計算機科學;2014年02期
5 董念清;;中國航班延誤的現(xiàn)狀、原因及治理路徑[J];北京航空航天大學學報(社會科學版);2013年06期
6 朱征宇;劉琳;崔明;;一種結(jié)合SVM與卡爾曼濾波的短時交通流預測模型[J];計算機科學;2013年10期
7 姚偉;;稅收組合預測仿真研究[J];計算機仿真;2012年10期
8 于濱;鄔珊華;王明華;趙志宏;;K近鄰短時交通流預測模型[J];交通運輸工程學報;2012年02期
9 應文威;蔣宇中;劉月亮;;大氣噪聲模型參數(shù)的非線性回歸估計[J];電子與信息學報;2012年03期
10 曹嵩;孫富春;胡來紅;劉華平;張學軍;;基于分布估計算法的離港航班排序優(yōu)化[J];清華大學學報(自然科學版);2012年01期
相關(guān)碩士學位論文 前6條
1 劉浩;基于Anylogic的航站樓旅客離港業(yè)務(wù)流程仿真研究[D];中國民用航空飛行學院;2016年
2 王楠;航班運行協(xié)同決策系統(tǒng)的研究[D];大連海事大學;2014年
3 邢濱;航班協(xié)同決策系統(tǒng)的研究和實現(xiàn)[D];大連理工大學;2014年
4 劉琰;支持向量機核函數(shù)的研究[D];西安電子科技大學;2012年
5 尹建杰;Logistic回歸模型分析綜述及應用研究[D];黑龍江大學;2011年
6 張玉敏;基于不同核函數(shù)的概率密度函數(shù)估計比較研究[D];河北大學;2010年
,本文編號:1602421
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1602421.html