基于Metrics統(tǒng)計量的非線性Profile控制圖
發(fā)布時間:2018-03-11 08:07
本文選題:Profile監(jiān)控 切入點:Metrics統(tǒng)計量 出處:《華東師范大學》2017年碩士論文 論文類型:學位論文
【摘要】:傳統(tǒng)控制圖在統(tǒng)計過程控制方面發(fā)揮著重要的作用,而現(xiàn)代工業(yè)領域由于技術的革新,傳統(tǒng)控制圖已經(jīng)滿足不了實際監(jiān)控的需要。相比于過去單一地監(jiān)控某個或某幾個質量特性,現(xiàn)在的生產過程通常需要準確地刻畫響應變量與解釋變量之間的函數(shù)關系才能更好地把握過程穩(wěn)定性。對這類回歸曲線的研究就被稱為Profile監(jiān)控問題。本文在Metrics統(tǒng)計量的基礎上引入CUSUM設計思想,提出了一類非線性Profile的控制圖方法,對Phase II階段進行監(jiān)控并及時對異常報警。為了滿足傳統(tǒng)CUSUM控制圖的正態(tài)性假設,我們首先對Metrics統(tǒng)計量作一步正態(tài)性變換并利用Shapiro-Wilk檢驗證明變換后的統(tǒng)計量近似服從正態(tài)分布;谡龖B(tài)變換的Metrics-CUSUM控制圖(NM-CUSUM)是在固定參考值下計算對應的控制限,較小參考值在監(jiān)控小漂移時表現(xiàn)較好,較大參考值在監(jiān)控中大漂移時表現(xiàn)較好。為了進一步提高控制圖監(jiān)控效果,我們接著設計了自適應的Metrics-CUSUM控制圖(AM-CUSUM),預先估計Profile的漂移量后自適應地選取最優(yōu)參考值,根據(jù)控制限擬合函數(shù)計算對應的控制限。最后我們利用bootstrap技術,設計了 一個不依賴于分布的動態(tài)控制限的Metrics-CUSUM控制圖(BM-CUSUM),計算出一系列控制限替代原來的單值控制限。這三個控制圖都有效改進了傳統(tǒng)Metrics控制圖的監(jiān)控效果。結合數(shù)值模擬可知,監(jiān)控小漂移時我們推薦較小參考值的NM-CUSUM和AM-CUSUM控制圖,監(jiān)控中大漂移時我們推薦較大參考值的BM-CUSUM控制圖。另外,若監(jiān)控系數(shù)漂移則優(yōu)先考慮積分形式的Metrics統(tǒng)計量設計控制圖,若監(jiān)控方差漂移則優(yōu)先考慮其它三個形式的Metrics統(tǒng)計量設計控制圖。
[Abstract]:Traditional control charts play an important role in statistical process control. Traditional control charts can no longer meet the needs of actual monitoring. The present production process usually needs to describe the functional relationship between the response variable and the explanatory variable accurately in order to better understand the stability of the process. The study of this kind of regression curve is called Profile monitoring problem. On the basis of metrology, the design idea of CUSUM is introduced. In this paper, a class of control chart method for nonlinear Profile is proposed, which monitors the stage of Phase II and alerts the abnormal in time. In order to satisfy the normal assumption of traditional CUSUM control chart, We first make a one-step normality transformation of Metrics statistics and prove by Shapiro-Wilk test that the transformed statistics are approximately obedient to normal distribution. The Metrics-CUSUM control graph based on normal transformation is to calculate the corresponding control limit under the fixed reference value. The smaller reference value is better when monitoring small drift, and the larger reference value is better when monitoring medium and large drift. In order to further improve the monitoring effect of control chart, Then, we design an adaptive Metrics-CUSUM control chart (AM-CUSUMN). After estimating the drift of Profile in advance, we adaptively select the optimal reference value and calculate the corresponding control limit according to the fitting function of the control limit. Finally, we use the bootstrap technique. In this paper, a Metrics-CUSUM control chart independent of distributed dynamic control limit is designed, and a series of control limits are calculated to replace the original single-value control limit. These three control charts effectively improve the monitoring effect of the traditional Metrics control chart. We recommend the NM-CUSUM and AM-CUSUM control charts of smaller reference values when monitoring small drift, and the BM-CUSUM control charts with larger reference values when monitoring medium and large drift. In addition, if the monitoring coefficients drift, we give priority to the integral form of Metrics statistics design control charts. If the variance drift is monitored, the other three forms of Metrics statistics are preferred to design the control chart.
【學位授予單位】:華東師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O213.1
【參考文獻】
相關博士學位論文 前1條
1 梁文娟;關于多元控制圖的若干問題研究[D];華東師范大學;2016年
,本文編號:1597299
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1597299.html
最近更新
教材專著