天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

棄權(quán)影響下Vague集相似性度量方法的改進(jìn)及應(yīng)用

發(fā)布時(shí)間:2018-02-03 06:44

  本文關(guān)鍵詞: Vague集(值) 相似性度量 區(qū)分度 TOPSIS法 動(dòng)態(tài)信息集結(jié)法 出處:《西安科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:近年來,Vague集的相似性度量方法以及基于Vague集的多屬性決策方法的研究受到了國內(nèi)外學(xué)者的高度關(guān)注。1993年,Gau和Buehrer提出了處理模糊信息的理論—Vague集理論,該理論本質(zhì)是對Fuzzy集理論的擴(kuò)展。本文依據(jù)已有的幾種Vague集的相似性度量方法的思想并考慮到棄權(quán)部分對Vague集相似性度量的影響,通過對改進(jìn)的相似性度量方法的證明和實(shí)驗(yàn)數(shù)據(jù)的分析,探討了改進(jìn)后的相似性度量方法對數(shù)據(jù)區(qū)分的影響,在此基礎(chǔ)上將改進(jìn)的相似性度量方法應(yīng)用到多屬性決策之中,通過具體的實(shí)例分析給出了合理的決策結(jié)果。主要內(nèi)容如下:首先,介紹了Vague集的相似性度量的相關(guān)理論,即Vague集的相似性度量的定義、運(yùn)算以及性質(zhì)等,分析了構(gòu)造Vague集的相似性度量方法需滿足的條件、定理。在此基礎(chǔ)上分析了已有的幾種Vague集的相似性度量方法,針對已有相似性度量方法未考慮到棄權(quán)部分對Vague集相似性度量的影響以及對數(shù)據(jù)不能進(jìn)行有效區(qū)分的缺點(diǎn),提出了改進(jìn)的相似性度量方法以及改進(jìn)的加權(quán)相似性度量方法。對改進(jìn)的相似性度量方法的定義的完備性在理論上進(jìn)行了證明,并通過九組隨機(jī)實(shí)驗(yàn)數(shù)據(jù)分析改進(jìn)的相似性度量方法對數(shù)據(jù)的影響,為了進(jìn)一步擴(kuò)大數(shù)據(jù)的范圍,分別在區(qū)間[0,1]上找到以0.1為步長的36*36組數(shù)據(jù)和以步長為0.01的2602*2602組數(shù)據(jù)對幾種度量方法進(jìn)行了分析、比較,可得出改進(jìn)的相似性度量方法對數(shù)據(jù)的區(qū)分度更有效、更高。其次,由于多屬性決策問題存在不確定性,將Vague集理論與多屬性決策的問題相結(jié)合,使得多屬性決策問題的解決更加快捷、有效。通過對基于Vague集理論的多屬性決策算法步驟的分析,針對備選方案的排序是直接影響決策結(jié)果的重要因素,為了能對備選方案進(jìn)行合理的區(qū)分,本文選取了改進(jìn)的Vague集的相似性度量公式作為多屬性決策問題的記分函數(shù)。最后,通過改進(jìn)的Vague集的相似性度量方法在簡單加權(quán)法、TOPSIS法和動(dòng)態(tài)信息集結(jié)方法上的應(yīng)用,即對具體的實(shí)例進(jìn)行分析,并給出了合理的決策結(jié)果。
[Abstract]:In recent years, the research on similarity measurement of vague sets and multi-attribute decision making based on Vague sets has been highly concerned by scholars at home and abroad. In 1993. Gau and Buehrer put forward the theory of dealing with fuzzy information-vague set theory. The essence of this theory is to extend the Fuzzy set theory. According to the idea of several existing similarity measurement methods of Vague sets and considering the influence of waiver part on the similarity measurement of Vague sets. Through the proof of the improved similarity measurement method and the analysis of the experimental data, the influence of the improved similarity measurement method on the data differentiation is discussed. On this basis, the improved similarity measurement method is applied to multi-attribute decision making, and a reasonable decision result is given through concrete examples. The main contents are as follows: first. This paper introduces the theory of similarity measurement of Vague sets, that is, the definition, operation and properties of similarity measurement of Vague sets. The conditions and theorems needed to be satisfied in constructing the similarity measurement methods of Vague sets are analyzed. On this basis, several existing similarity measurement methods of Vague sets are analyzed. The existing similarity measurement methods do not take into account the impact of waiver on similarity measurement of Vague sets and the disadvantage that data can not be effectively distinguished. An improved similarity measurement method and an improved weighted similarity measurement method are proposed. The completeness of the definition of the improved similarity measurement method is proved theoretically. The influence of the improved similarity measurement method on the data is analyzed through nine groups of random experimental data. In order to further expand the range of the data, [In this paper, 36 groups of data with 0.1 step size and 2602 groups of data with step size 0.01 were found to analyze and compare several measurement methods. It can be concluded that the improved similarity measurement method is more effective and higher in data differentiation. Secondly, because of the uncertainty of multi-attribute decision making problem, the Vague set theory is combined with the multi-attribute decision making problem. The solution of multi-attribute decision making problem is faster and more effective. Through the analysis of the steps of multi-attribute decision making algorithm based on Vague set theory. The ranking of alternatives is an important factor that directly affects the decision results, in order to make a reasonable distinction between the alternatives. In this paper, the improved Vague set similarity measurement formula is selected as the score function of the multi-attribute decision making problem. Finally, the simple weighting method is used to measure the similarity of the improved Vague set. The application of TOPSIS method and dynamic information aggregation method is the analysis of concrete examples and the reasonable decision results are given.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O159

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 蘭蓉;朱倩瀾;;改進(jìn)的Vague值相似度及多準(zhǔn)則決策方法[J];西安郵電大學(xué)學(xué)報(bào);2016年03期

2 趙雪芬;李星;;基于R_0蘊(yùn)涵算子的Vague集相似度量研究[J];統(tǒng)計(jì)與決策;2016年01期

3 劉慶;王昌;;基于Vague集TOPSIS法的多屬性決策方法研究[J];模糊系統(tǒng)與數(shù)學(xué);2015年02期

4 楊清波;郭榮偉;韓延彬;;一種基于積的vague集合相似性度量方法[J];濟(jì)南大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年06期

5 陳可;張小強(qiáng);胡東濱;;基于灰關(guān)聯(lián)分析的Vague集多準(zhǔn)則決策方法[J];統(tǒng)計(jì)與決策;2014年20期

6 鄧維斌;許昌林;樊自甫;;基于Vague集相似度量的多準(zhǔn)則模糊決策方法[J];系統(tǒng)工程理論與實(shí)踐;2014年04期

7 姚遠(yuǎn);;動(dòng)態(tài)模糊評價(jià)的Vague集方法[J];統(tǒng)計(jì)與決策;2014年06期

8 王萬軍;;基于Vague集記分函數(shù)的一種構(gòu)造方法[J];鄭州大學(xué)學(xué)報(bào)(理學(xué)版);2014年01期

9 閆濱;錢靜宇;郭超;;基于動(dòng)態(tài)權(quán)重的綜合指標(biāo)權(quán)重確定及應(yīng)用[J];沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào);2014年01期

10 韋波;王熙宇;汪志超;;基于轉(zhuǎn)化模型的Vague集多準(zhǔn)則模糊決策記分函數(shù)[J];桂林理工大學(xué)學(xué)報(bào);2013年04期

相關(guān)博士學(xué)位論文 前1條

1 張市芳;幾種模糊多屬性決策方法及其應(yīng)用[D];西安電子科技大學(xué);2012年

相關(guān)碩士學(xué)位論文 前4條

1 黃艷;基于動(dòng)態(tài)Vague集模糊多屬性決策的研究[D];云南財(cái)經(jīng)大學(xué);2013年

2 江偉;Vague集理論及其在智能決策中的應(yīng)用研究[D];廣西大學(xué);2008年

3 唐志剛;Vague集理論及其應(yīng)用研究[D];廣西大學(xué);2007年

4 朱振國;Vague集相似度量研究[D];重慶郵電大學(xué);2007年

,

本文編號(hào):1486722

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1486722.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶edae6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com