區(qū)域物流發(fā)展多方法評(píng)價(jià)研究
本文關(guān)鍵詞: 區(qū)域物流 logistic模型 數(shù)據(jù)包絡(luò)分析 離差最大化 VAR模型 出處:《北京交通大學(xué)》2017年博士論文 論文類(lèi)型:學(xué)位論文
【摘要】:區(qū)域物流推動(dòng)區(qū)域經(jīng)濟(jì)發(fā)展的作用日益凸顯,物流業(yè)已經(jīng)成為區(qū)域經(jīng)濟(jì)新的增長(zhǎng)點(diǎn)。但伴隨著區(qū)域物流的不斷壯大,其在發(fā)展過(guò)程中存在一定的問(wèn)題,越來(lái)越需要對(duì)其進(jìn)行具體的比較與評(píng)價(jià),指明問(wèn)題所在及提出改進(jìn)的方向。針對(duì)上述情況,對(duì)我國(guó)區(qū)域物流發(fā)展進(jìn)行較為系統(tǒng)與全面的評(píng)價(jià)已成為當(dāng)務(wù)之急。本論文從五個(gè)方面對(duì)我國(guó)區(qū)域物流進(jìn)行了評(píng)價(jià)與分析:第一,利用logistic模型,分析我國(guó)31省(市)及東、中、西部地區(qū)物流產(chǎn)業(yè)發(fā)展趨勢(shì),比較全國(guó)及相關(guān)區(qū)域的物流產(chǎn)業(yè)發(fā)展差異。同時(shí)建立“物流產(chǎn)業(yè)-經(jīng)濟(jì)-交通基礎(chǔ)設(shè)施”復(fù)合系統(tǒng),利用協(xié)同學(xué)理論考察我國(guó)東、中、西部地區(qū)相關(guān)協(xié)調(diào)度。第二,創(chuàng)建區(qū)域物流發(fā)展競(jìng)爭(zhēng)與支撐二維評(píng)價(jià)指標(biāo)體系。結(jié)合主成分分析法與K-均值聚類(lèi)分析法將我國(guó)31個(gè)省(市)歸類(lèi)到高-中-低競(jìng)爭(zhēng)與支撐聚類(lèi)體系矩陣,清晰的描述出我國(guó)31個(gè)省(市)在“十二五”初期與末期處在矩陣中的位置,為“十三五”期間區(qū)域物流的改進(jìn)方向提供理論依據(jù)。第三,結(jié)合我國(guó)31個(gè)省(市)2010~2014年物流投入與產(chǎn)出的數(shù)據(jù),利用數(shù)據(jù)包絡(luò)分析方法,系統(tǒng)的分析我國(guó)各省(市)的物流行業(yè)綜合技術(shù)效率、純技術(shù)效率和規(guī)模效率情況,得到位于物流技術(shù)前沿面的省(市)情況。同時(shí)考慮到各省(市)面臨的外部環(huán)境不同,利用隨機(jī)前沿分析模型,通過(guò)計(jì)算,剔除環(huán)境因素與隨機(jī)因素影響,然后測(cè)算出的省(市)及區(qū)域物流效率值,有效避免環(huán)境及隨機(jī)因素對(duì)相關(guān)效率的低估或高估現(xiàn)象,更為準(zhǔn)確地進(jìn)行省(市)及區(qū)域物流業(yè)的效率評(píng)價(jià)。第四,當(dāng)利用若干個(gè)指標(biāo)進(jìn)行區(qū)域物流綜合排序評(píng)價(jià)時(shí),其相關(guān)指標(biāo)并不是同等重要的,所以在評(píng)價(jià)的過(guò)程中要對(duì)不同的評(píng)價(jià)指標(biāo)賦以不同的權(quán)重。權(quán)重在效率評(píng)價(jià)中是一個(gè)重要的指標(biāo)標(biāo)定系數(shù),合理的分配權(quán)重是排序評(píng)價(jià)的一個(gè)重要步驟。因此,論文提出綜合離差最大化模型,在屬性綜合離差(即屬性組內(nèi)離差與屬性平均值組間離差)達(dá)到最大化時(shí),建立規(guī)劃模型,利用方案中現(xiàn)有數(shù)據(jù),求解各屬性值權(quán)重。利用該模型分別與灰色系統(tǒng)關(guān)聯(lián)分析模型以及層次分析法相結(jié)合,客觀的進(jìn)行較少數(shù)量決策單元和具有雙層評(píng)價(jià)指標(biāo)的區(qū)域物流排序評(píng)價(jià)。第五,區(qū)域物流與區(qū)域經(jīng)濟(jì)的發(fā)展有著極為密切的聯(lián)系,為定量的分析兩者間的相互關(guān)系,選取經(jīng)濟(jì)與物流中的典型指標(biāo),利用VAR模型及面板數(shù)據(jù)模型,精細(xì)的研究我國(guó)東部、中西部及31個(gè)省(市)經(jīng)濟(jì)與物流相互間的協(xié)整與定量關(guān)系,量化其影響程度,為更好的促進(jìn)二者的健康發(fā)展提供理論依據(jù)。本文通過(guò)對(duì)區(qū)域物流多方法評(píng)價(jià)的研究,有助于豐富區(qū)域物流評(píng)價(jià)系統(tǒng)理論,并為我國(guó)區(qū)域物流發(fā)展方向提供科學(xué)依據(jù)。
[Abstract]:The role of regional logistics to promote regional economic development is increasingly prominent, logistics industry has become a new growth point of regional economy, but with the continuous growth of regional logistics, there are certain problems in the process of development. There is a growing need to compare and evaluate them specifically, to indicate where the problem lies and to propose directions for improvement. It is urgent to evaluate the development of regional logistics in China systematically and comprehensively. This paper evaluates and analyzes regional logistics from five aspects: first, using logistic model. This paper analyzes the development trend of logistics industry in 31 provinces (cities), east, middle and west of China. This paper compares the development of logistics industry in the whole country and related regions. At the same time, it sets up the compound system of "logistics industry-economic-transportation infrastructure", and makes use of the synergetic theory to investigate the east and the middle of our country. Correlation degree of coordination in the western region. Second. To establish a two-dimensional evaluation index system of regional logistics development competition and support. Combining principal component analysis and K-means clustering analysis, 31 provinces (cities) in China are classified into high-middle-low competition and support cluster system matrix. It clearly describes the position of 31 provinces (cities) in the matrix at the beginning and the end of the 12th Five-Year Plan, which provides the theoretical basis for the improvement direction of regional logistics during the 13th Five-Year Plan period. Third. Based on the data of input and output of logistics from 2010 to 2014 in 31 provinces of China, the comprehensive technical efficiency of logistics industry in all provinces (cities) of China is analyzed systematically by using the method of data envelopment analysis. Pure technical efficiency and scale efficiency, the situation of province (city) located at the front of logistics technology is obtained. Considering the different external environment of each province (city), the stochastic frontier analysis model is used to calculate. Eliminate the environmental factors and random factors, and then calculate the provincial (city) and regional logistics efficiency value, effectively avoid the environment and random factors to the related efficiency of underestimation or overestimation. More accurate evaluation of the efficiency of the provincial (city) and regional logistics industry. 4th, when using a number of indicators to evaluate the comprehensive ranking of regional logistics, its related indicators are not equally important. Therefore, in the process of evaluation, we should assign different weights to different evaluation indexes. Weight is an important index calibration coefficient in efficiency evaluation, and rational distribution of weights is an important step in ranking evaluation. In this paper, a comprehensive deviation maximization model is proposed. When the attribute comprehensive deviation (i.e., the inter-group deviation between the attribute group and the attribute average group) is maximized, the planning model is established and the existing data in the scheme are used. The weight of each attribute value is solved, and the model is combined with the grey system correlation analysis model and the analytic hierarchy process (AHP), respectively. There is a close relationship between regional logistics and the development of regional economy. It is objective to carry out fewer decision-making units and regional logistics ranking evaluation with double-level evaluation index. 5th, regional logistics and the development of regional economy have a very close relationship. In order to quantitatively analyze the relationship between the two, select the typical economic and logistics indicators, using the VAR model and panel data model, fine research in eastern China. The cointegration and quantitative relationship between economy and logistics in the central and western regions and 31 provinces (cities) to quantify the degree of influence. In order to better promote the healthy development of the two to provide a theoretical basis. Through the study of multi-method evaluation of regional logistics, it is helpful to enrich the theory of regional logistics evaluation system. And provides the scientific basis for the development direction of the regional logistics in our country.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:F224;F259.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳巍巍;張雷;馬鐵虎;劉秋~x;;關(guān)于三階段DEA模型的幾點(diǎn)研究[J];系統(tǒng)工程;2014年09期
2 鄒文杰;;基于Logistic模型的我國(guó)研發(fā)產(chǎn)業(yè)演化路徑實(shí)證研究[J];經(jīng)濟(jì)研究參考;2013年53期
3 王昊;;中部地區(qū)區(qū)域物流競(jìng)爭(zhēng)力評(píng)價(jià)研究[J];現(xiàn)代商貿(mào)工業(yè);2012年21期
4 李全喜;劉巖;劉佳琳;;基于Logistic回歸分析的我國(guó)物流產(chǎn)業(yè)成長(zhǎng)研究[J];軟科學(xué);2012年09期
5 崔平;李琰;;陜西承接?xùn)|部產(chǎn)業(yè)轉(zhuǎn)移的物流能力分析[J];城市發(fā)展研究;2012年04期
6 羅登躍;;三階段DEA模型管理無(wú)效率估計(jì)注記[J];統(tǒng)計(jì)研究;2012年04期
7 袁懷宇;;基于面板數(shù)據(jù)的區(qū)域物流與經(jīng)濟(jì)增長(zhǎng)關(guān)系研究[J];山東社會(huì)科學(xué);2012年03期
8 呂璞;徐豐偉;;基于主成分分析的城市物流發(fā)展評(píng)價(jià)[J];大連交通大學(xué)學(xué)報(bào);2012年01期
9 高秀麗;王愛(ài)虎;房興超;;廣東省區(qū)域物流與區(qū)域經(jīng)濟(jì)增長(zhǎng)關(guān)系的實(shí)證研究[J];工業(yè)工程;2012年01期
10 李中秋;;區(qū)域物流與區(qū)域經(jīng)濟(jì)發(fā)展的關(guān)系研究[J];中國(guó)商貿(mào);2011年32期
,本文編號(hào):1474058
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1474058.html