兩類(lèi)脈沖微分方程的定性研究
本文關(guān)鍵詞:兩類(lèi)脈沖微分方程的定性研究
更多相關(guān)文章: Hassell-Varley模型 脈沖 時(shí)滯 周期解 概周期解
【摘要】:本學(xué)位論文討論了具有脈沖的互利共生模型以及具有脈沖的Hassell-Varley型功能性反應(yīng)的食餌-捕食者系統(tǒng).利用系統(tǒng)的分析方法得到了周期解和概周期解存在的充分性條件.全文共分為三章.第一章介紹了本課題的歷史發(fā)展過(guò)程、研究現(xiàn)狀以及本文的主要研究工作.第二章討論了具有脈沖效應(yīng)的互利共生型的周期解和概周期解的存在性.本文考慮到合適的脈沖使生物系統(tǒng)更符合實(shí)際情況,因此在原模型的基礎(chǔ)上加入了合適的脈沖.主要方法是利用脈沖微分不等式以及放縮技巧得到所構(gòu)造系統(tǒng)是持續(xù)生存的,利用重合度理論得到了正周期解存在的充分性條件.最后利用袁榮的Razumikhin type定理以及數(shù)學(xué)分析技巧得到了概周期解存在的充分性條件.第三章研究了具有脈沖的多時(shí)滯Hassell-Varley型功能性反應(yīng)的食餌-捕食者系統(tǒng)周期解的存在性.利用重合度理論,得到了該系統(tǒng)存在周期解的充分性條件.
【關(guān)鍵詞】:Hassell-Varley模型 脈沖 時(shí)滯 周期解 概周期解
【學(xué)位授予單位】:湖南師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:O175
【目錄】:
- 中文摘要3-4
- 英文摘要4-6
- 1. 緒論6-12
- 2. 具有脈沖的無(wú)窮合作種群模型的持續(xù)性,周期解和概周期解的存在性的研究12-33
- 2.1 引言12-13
- 2.2 預(yù)備知識(shí)13-21
- 2.3 周期解的存在性21-27
- 2.4 概周期解的存在性27-33
- 3. 具有線性捕獲項(xiàng)的脈沖多時(shí)滯Hassell-Varley型功能性反應(yīng)的食餌-捕食者系統(tǒng)周期解的存在性33-47
- 3.1 引言33-35
- 3.2 預(yù)備知識(shí)35-40
- 3.3 主要結(jié)果40-47
- 結(jié)語(yǔ)47-48
- 參考文獻(xiàn)48-50
- 致謝50-51
【相似文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 張瑜;王春燕;孫繼濤;;具有可變脈沖點(diǎn)的脈沖微分方程的穩(wěn)定性[J];數(shù)學(xué)物理學(xué)報(bào);2005年06期
2 李建利;李維岳;;凸脈沖微分方程周期解的存在性(英文)[J];懷化學(xué)院學(xué)報(bào)(自然科學(xué));2006年02期
3 譚遠(yuǎn)順;陶鳳梅;陳蘭蓀;;狀態(tài)脈沖微分方程研究進(jìn)展[J];南京師大學(xué)報(bào)(自然科學(xué)版);2007年03期
4 夏正威;;脈沖微分方程的嚴(yán)格實(shí)用穩(wěn)定性(英文)[J];科學(xué)技術(shù)與工程;2008年23期
5 張?jiān)旅?劉玫;一類(lèi)脈沖微分方程周期解的吸引性[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年02期
6 石漂漂,李戟;一階混合單調(diào)脈沖微分方程解的存在性[J];晉中師范高等專(zhuān)科學(xué)校學(xué)報(bào);2002年04期
7 陳蘭蓀;脈沖微分方程與生命科學(xué)[J];平頂山師專(zhuān)學(xué)報(bào);2002年02期
8 楊晉,張玲玲;脈沖微分方程終值問(wèn)題的解[J];太原理工大學(xué)學(xué)報(bào);2003年04期
9 竇家維,李開(kāi)泰;一類(lèi)脈沖微分方程零解的穩(wěn)定性[J];系統(tǒng)科學(xué)與數(shù)學(xué);2004年01期
10 李建利,申建華;脈沖微分方程正解的存在性(英文)[J];數(shù)學(xué)研究;2004年03期
中國(guó)重要會(huì)議論文全文數(shù)據(jù)庫(kù) 前2條
1 成登華;吳貴生;;二階非線性脈沖微分方程解的漸近性[A];數(shù)學(xué)·物理·力學(xué)·高新技術(shù)研究進(jìn)展(一九九六·第六期)——中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會(huì)第6屆學(xué)術(shù)研討會(huì)論文集[C];1996年
2 張剛;張偉;;復(fù)雜網(wǎng)絡(luò)的脈沖同步[A];第八屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議論文集[C];2008年
中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條
1 陳華雄;幾類(lèi)非光滑動(dòng)力系統(tǒng)的研究[D];華東師范大學(xué);2016年
2 康寶林;基于脈沖微分方程的害蟲(chóng)治理策略研究[D];大連理工大學(xué);2016年
3 黃明湛;脈沖微分方程在生物控制問(wèn)題中的若干應(yīng)用[D];中國(guó)林業(yè)科學(xué)研究院;2016年
4 焦建軍;脈沖微分方程在生物經(jīng)濟(jì)學(xué)中的應(yīng)用[D];大連理工大學(xué);2008年
5 楊徐昕;脈沖微分方程解的存在性與脈沖生物模型的持久性[D];湖南師范大學(xué);2010年
6 張玉娟;脈沖微分方程在種群生態(tài)管理數(shù)學(xué)模型研究中的應(yīng)用[D];大連理工大學(xué);2004年
7 羅治國(guó);脈沖微分方程解的存在性與定性研究[D];湖南師范大學(xué);2004年
8 李秋月;二階脈沖微分方程正解的存在性[D];吉林大學(xué);2012年
9 王鳳筵;周期時(shí)變種群系統(tǒng)研究及應(yīng)用[D];大連理工大學(xué);2006年
10 裴永珍;脈沖微分方程在農(nóng)業(yè)生態(tài)數(shù)學(xué)模型中的應(yīng)用研究[D];大連理工大學(xué);2006年
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條
1 鮑俊艷;擾動(dòng)脈沖微分方程的兩測(cè)度穩(wěn)定性[D];河北大學(xué);2004年
2 李遠(yuǎn)遠(yuǎn);周期環(huán)境下脈沖微分方程的定性分析及應(yīng)用[D];溫州大學(xué);2015年
3 劉海玉;具有階段結(jié)構(gòu)脈沖微分方程的動(dòng)力學(xué)行為分析[D];溫州大學(xué);2015年
4 周文娟;變分法與幾類(lèi)四階脈沖微分方程解的存在性和多解性[D];湖南師范大學(xué);2015年
5 李海明;分?jǐn)?shù)階脈沖微分方程邊值問(wèn)題解的存在性[D];河北科技大學(xué);2014年
6 高貝貝;森林病蟲(chóng)害治理的脈沖微分方程模型[D];浙江工業(yè)大學(xué);2015年
7 李金玲;脈沖微分方程的hp-Legendre-Gauss-Radau譜配置方法[D];黑龍江大學(xué);2015年
8 鄭英;幾類(lèi)二階非線性脈沖系統(tǒng)的定性研究[D];杭州師范大學(xué);2016年
9 王丹;幾類(lèi)脈沖微分方程正解的存在唯一性[D];太原理工大學(xué);2016年
10 胡琦;四階脈沖微分方程解的存在性[D];湖南師范大學(xué);2016年
,本文編號(hào):1035494
本文鏈接:http://www.sikaile.net/kejilunwen/yysx/1035494.html