DV-Hop定位算法誤差分析與優(yōu)化
【圖文】:
八鬮侵釗淶淖钚?跳數,基于以上兩個信息可估算出節(jié)點間進行通訊時每一跳所經過的實際距離,記為HopSize.計算平均跳距的公式如式(1)所示.22()ijijiji,jijxx)(yyHopSizeh(1)其中()ijx,x,()ijy,y為信標節(jié)點i,j坐標,i,jh為信標節(jié)點i與j之間的最小跳數.3)計算未知節(jié)點位置設u,sd為估算的未知節(jié)點u到信標節(jié)點s的距離,計算公式如式(2)所示.u,su,sdHopSizet(2)當未知節(jié)點得到周圍三個信標的距離信息后,根據三邊定位原理即可計算出未知節(jié)點的實際方位.三邊定位求解原理如圖1所示.設信標節(jié)點A1,A2,A3的坐標分別為()iix,y,其中(i1,2,3),未知節(jié)點的坐標為(x,y),未知節(jié)點與三個信標的距離分別為(1,2,3)idi,那么存在以下關系,如式(3)所示.圖1三邊定位求解圖222222()()()()()()111222333xxyydxxyydxxyyd(3)由上式可計算出未知節(jié)點的具體坐標,從而實現對該節(jié)點的定位.2誤差分析2.1節(jié)點分布的均勻程度對定位精度的影響DV-Hop算法由于依賴于跳數進行距離估算,其對平均跳距的估算決定著定位的精度,在一些節(jié)點分布均勻的情況下,DV-Hop具有良好的定位精度.但是在實際運用中,節(jié)點可能呈非均勻分布,即某個區(qū)域內節(jié)點分布密集,另外的區(qū)域內節(jié)點分布稀疏.分析算法計算公式可知,得出的平均跳距HopSize的值具有唯一性,無法隨著節(jié)點分布的疏密而改變.在節(jié)點分布密集的環(huán)境下,計算得到的平均每跳距離相比于節(jié)點稀疏的環(huán)境的平均每跳距離較大,這是因為節(jié)點越密集,它們之間的通信路徑就越近似于一條直線,如圖2所示,且計算得出的平均每跳距離近似于節(jié)點自身的通信半徑(平均每跳距離一定不大于通信半徑).圖2理想情況下的節(jié)點拓撲節(jié)點A與節(jié)點B進行通信?
2.1節(jié)點分布的均勻程度對定位精度的影響DV-Hop算法由于依賴于跳數進行距離估算,其對平均跳距的估算決定著定位的精度,在一些節(jié)點分布均勻的情況下,DV-Hop具有良好的定位精度.但是在實際運用中,節(jié)點可能呈非均勻分布,即某個區(qū)域內節(jié)點分布密集,另外的區(qū)域內節(jié)點分布稀疏.分析算法計算公式可知,得出的平均跳距HopSize的值具有唯一性,無法隨著節(jié)點分布的疏密而改變.在節(jié)點分布密集的環(huán)境下,計算得到的平均每跳距離相比于節(jié)點稀疏的環(huán)境的平均每跳距離較大,這是因為節(jié)點越密集,它們之間的通信路徑就越近似于一條直線,如圖2所示,且計算得出的平均每跳距離近似于節(jié)點自身的通信半徑(平均每跳距離一定不大于通信半徑).圖2理想情況下的節(jié)點拓撲節(jié)點A與節(jié)點B進行通信時,針對該算法的最理想情況,即存在節(jié)點C,使得節(jié)點C與節(jié)點A和B的距離恰好等于節(jié)點的通信半徑.該網絡拓撲情況下使用該算法計算得出的平均跳距就為通信半徑,計算得
計算機系統(tǒng)應用http://www.c-s-a.org.cn2017年第26卷第4期188軟件技術·算法SoftwareTechnique·Algorithm出節(jié)點A與B的距離也與實際相等.在節(jié)點分布稀疏區(qū)域,節(jié)點A與B的通信可能經過若干個節(jié)點,這將造成計算得出的平均每跳距離小于通信半徑,所以全部節(jié)點都使用相同的平均跳距進行距離計算將影響定位精度.2.2連通度較低的信標節(jié)點對定位精度的影響連通度較低的信標節(jié)點會造成定位誤差,如圖3所示的網絡拓撲環(huán)境.圖3節(jié)點網絡拓撲圖信標節(jié)點A,B,C,D與待定位節(jié)點U,其余為普通節(jié)點,由于地形或節(jié)點運動原因,節(jié)點B與節(jié)點C之間存在障礙物,造成信標節(jié)點C處于整個網絡邊緣.位于區(qū)域邊界的節(jié)點C只能接收到來自某一側的信息,使得該節(jié)點無法利用全面的信息進行定位計算.如果使用信標節(jié)點A、B、C計算得到的平均每跳距離約為10m,可觀察到,實際情況中B與C的距離只是不到兩個通信距離,而B與C之間的跳數達到了6跳,使用該平均每跳距離計算A與B的距離為20m.這與真實距離相差了一倍,若使用該平均跳距計算未知節(jié)點位置必然會造成較大誤差.造成該影響的原因為信標節(jié)點C的連通度較低處于網絡邊緣,信標節(jié)點C的通信半徑下僅有1個節(jié)點.如果排除C節(jié)點,使用信標節(jié)點A、B、D來估算平均每跳距離則誤差較小.2.3三邊定位計算公式對定位精度的影響根據三邊定位原理可知,節(jié)點定位時通過周圍三個信標節(jié)點的位置信息來計算自身位置,所以選擇不同的信標計算得到的位置信息也不同.一般情況下,對這三個信標節(jié)點的選擇采用就近原則,即選擇距離未知節(jié)點最近的三個信標進行位置的計算,這樣可以減少定位的誤差.但實際情況下,由平均跳距計算得出的節(jié)點間距離與實際距離存在偏差,三邊定位求解圖中的三個圓的交匯處是一塊區(qū)域,而不是一個點,如圖4所示.圖4三邊定位誤差?
【相似文獻】
相關期刊論文 前10條
1 汪魯才;趙延f;林海軍;劉國鋒;;基于分布式壓縮感知的能量收集WSNs[J];傳感器與微系統(tǒng);2014年07期
2 張曉峰;;動態(tài)序列計算在網連續(xù)位置的隱私保護協議研究[J];電子技術與軟件工程;2014年10期
3 王雪;劉吉星;;一種基于RFID的室內小型載體跟蹤算法[J];山東廣播電視大學學報;2012年03期
4 李斌;田亞萍;焦亮;;基于ZIGBEE技術的安防系統(tǒng)設計與實現[J];微計算機信息;2009年26期
5 宋依青;王希之;陳興瑞;時翔;唐曉紅;;無線傳感網絡智能起爆系統(tǒng)關鍵技術研究[J];爆破;2014年02期
6 秦寧寧;郭立俠;余穎華;宋煒;徐保國;;一種基于空洞交叉點信息的高效覆蓋修補算法[J];計算機應用研究;2014年08期
7 史久根;劉勝;;基于壓縮感知的無線傳感網絡數據壓縮[J];計算機工程與應用;2014年10期
8 鄭顧平;朱維;;基于LEACH協議的安全性改進與建模分析[J];軟件導刊;2014年07期
9 張柏林;王艷梅;;基于zigbee的大棚溫濕度實時監(jiān)測系統(tǒng)[J];無線互聯科技;2014年06期
10 趙菊敏;張子辰;李燈熬;溫海濱;;基于LEACH路由協議的多跳節(jié)能路由算法[J];計算機測量與控制;2014年05期
相關會議論文 前1條
1 魏夢珂;趙銳;鄭貴省;郭偉;郭強;;基于ZigBee技術的交通基礎設施警戒系統(tǒng)研究與設計[A];2008第四屆中國智能交通年會論文集[C];2008年
相關碩士學位論文 前2條
1 鄔瓊;基于ARM的多協議模式智能網關設計應用[D];黑龍江大學;2015年
2 楊珊珊;基于RFID與WSN融合技術的研究[D];西安工程大學;2013年
本文編號:2756366
本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/2756366.html