天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 信息工程論文 >

基于毫米波雷達(dá)定位的汽車三維防碰撞算法研究

發(fā)布時間:2019-01-15 07:29
【摘要】:近年來,隨著互聯(lián)網(wǎng)+汽車概念的提出,無人駕駛汽車、智能汽車的研發(fā)如火如荼。汽車防碰撞技術(shù)作為無人駕駛汽車、智能汽車的關(guān)鍵技術(shù)之一,也是避免交通事故的關(guān)鍵技術(shù),成為國內(nèi)外研究的熱點(diǎn)。測量技術(shù),是汽車防碰撞技術(shù)中的關(guān)鍵技術(shù)之一。經(jīng)典的線性調(diào)頻連續(xù)波(LFMCW)雷達(dá)測量方法用FFT變換進(jìn)行數(shù)據(jù)處理,采樣點(diǎn)增多時計(jì)算量顯著增長,使測量系統(tǒng)實(shí)時性不理想。為解決此問題引入了互相關(guān)函數(shù)測量方法,結(jié)合互相關(guān)函數(shù)測量法測得的值,對采樣信息的有效采樣點(diǎn)部分進(jìn)行FFT變換,可以快速高效地測出更精準(zhǔn)的距離信息。汽車安全距離模型,是汽車防碰撞系統(tǒng)中的核心技術(shù),F(xiàn)有的安全距離模型多以實(shí)際速度等實(shí)際信息為參考因素,沒有合理考慮相對速度等相對信息的變化情況沒有考慮道路狀況、天氣情況等復(fù)雜交通環(huán)境帶來的影響。基于此,本文參考現(xiàn)有的安全距離模型的構(gòu)造原理,基于車輛制動過程,從相對速度的角度,根據(jù)相對速度Δv等于0、大于0和小于0三種不同的情況建立了三種不同的安全距離模型。不僅合理考慮了相對速度對安全距離的影響,還考慮了不同材質(zhì)的路面對安全距離模型的影響,同時考慮天氣因素和駕駛員的駕駛習(xí)慣反應(yīng)速度等因素對安全距離的影響。最后,利用防碰撞系統(tǒng)實(shí)時探測計(jì)算得到的交通信息,根據(jù)制定的汽車防碰撞預(yù)警策略,通過聲音、燈光和液晶顯示屏分等級進(jìn)行報(bào)警,提醒駕駛員汽車當(dāng)前行駛的安全狀態(tài),必要時啟動汽車制動系統(tǒng)進(jìn)行自動剎車,從而有效減少碰撞事故的發(fā)生,保證汽車出行的方便、安全、舒心。結(jié)合BP神經(jīng)網(wǎng)絡(luò)進(jìn)行研究,有效解決了影響汽車安全距離因素多,汽車安全距離模型比較復(fù)雜,存在大量的非線性變化等問題,能夠滿足實(shí)際交通過程中需要不斷更新模型參數(shù),甚至不斷更新模型的要求,使得汽車防碰撞系統(tǒng)能夠根據(jù)交通狀況實(shí)時更新安全距離模型及參數(shù)。
[Abstract]:In recent years, with the introduction of the concept of Internet vehicles, driverless vehicles, intelligent vehicles are in full swing. As one of the key technologies of driverless vehicles and intelligent vehicles, anti-collision technology is also the key technology to avoid traffic accidents, and has become a hot research topic at home and abroad. Measurement technology is one of the key technologies in automobile anti-collision technology. The classical linear frequency modulation continuous wave (LFMCW) radar measurement method uses FFT transform to process the data. When the number of sampling points increases, the amount of calculation increases significantly, which makes the real-time performance of the measurement system unsatisfactory. In order to solve this problem, the cross-correlation function measurement method is introduced. The effective sampling point part of sampling information can be transformed by FFT with the value measured by cross-correlation function measurement method, and more accurate distance information can be measured quickly and efficiently. Vehicle safety distance model is the core technology of automobile anti-collision system. Most of the existing safety distance models take the actual information such as actual speed as reference factors, and do not consider the change of relative information such as relative speed reasonably, and do not take into account the influence of complex traffic environment such as road condition, weather condition and so on. Based on this, this paper refers to the construction principle of the existing safety distance model, based on the vehicle braking process, from the angle of relative velocity, according to the relative velocity 螖 v = 0, Three different safety distance models are established for three different cases: greater than 0 and less than 0. Not only the influence of relative speed on safety distance is considered reasonably, but also the influence of different pavement materials on safety distance model is considered, and the influence of weather factors and driver's driving habit reaction speed on safety distance is also considered. Finally, using the anti-collision system to detect and calculate the traffic information in real time, according to the anti-collision warning strategy, alarm is made through the grade of sound, light and liquid crystal display to remind the driver of the current safety state of the vehicle. When necessary, the auto brake system can be started to reduce the collision accident and ensure the convenience, safety and comfort of the vehicle travel. Based on the research of BP neural network, the problems such as many factors affecting vehicle safety distance, complex vehicle safety distance model and a large number of nonlinear changes are effectively solved. It can meet the requirements of updating the model parameters and even updating the model constantly in the actual traffic process, so that the vehicle anti-collision system can update the safety distance model and parameters according to the traffic conditions in real time.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN958;U463.6

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉貴如;周鳴爭;王陸林;王海;;城市工況下最小安全車距控制模型和避撞算法[J];汽車工程;2016年10期

2 袁朝春;李道宇;吳飛;劉逸群;張龍飛;;汽車縱向主動避撞DRV安全距離模型[J];重慶理工大學(xué)學(xué)報(bào)(自然科學(xué));2016年05期

3 朱冰;樸奇;趙健;吳堅(jiān);鄧偉文;;基于路面附著系數(shù)估計(jì)的汽車縱向碰撞預(yù)警策略[J];汽車工程;2016年04期

4 胡丹;王紅燕;湯振杰;張希威;鞠琳;王華英;;Design of a multiband terahertz perfect absorber[J];Chinese Physics B;2016年03期

5 何f 明;謝文球;羅積潤;朱敏;郭煒;;Linear theory of beam wave interaction in double-slot coupled cavity travelling wave tube[J];Chinese Physics B;2016年03期

6 馬可;張遠(yuǎn)安;張開生;;CZT和ZFFT頻譜細(xì)化性能分析及FPGA實(shí)現(xiàn)[J];計(jì)算機(jī)測量與控制;2016年02期

7 袁偉;付銳;馬勇;郭應(yīng)時;杜春臣;;基于高速實(shí)車駕駛數(shù)據(jù)的駕駛?cè)烁嚹P脱芯縖J];汽車工程;2015年06期

8 孫玲芳;周加波;林偉健;候志魯;許鋒;;基于BP神經(jīng)網(wǎng)絡(luò)和遺傳算法的網(wǎng)絡(luò)輿情危機(jī)預(yù)警研究[J];情報(bào)雜志;2014年11期

9 彭映成;錢海;黎小毛;朱寶良;;基于時間互相關(guān)的超聲測距信號獲取方法[J];儀表技術(shù)與傳感器;2014年06期

10 游峰;張榮輝;王海瑋;溫惠英;徐建閩;;基于縱向安全距離的超車安全預(yù)警模型[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年08期

相關(guān)博士學(xué)位論文 前2條

1 張勇剛;道路交通事故再現(xiàn)及預(yù)防關(guān)鍵技術(shù)研究[D];華南理工大學(xué);2015年

2 吳濤;考慮駕駛員避撞行為特性的汽車前方防碰撞系統(tǒng)研究[D];吉林大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 明廷友;智能汽車的軌跡跟隨控制研究[D];吉林大學(xué);2016年

2 鄭磊;汽車縱向主動避撞控制方法研究[D];西華大學(xué);2014年

3 于立勇;基于車路協(xié)同安全距離模型的車速引導(dǎo)系統(tǒng)研究[D];北京交通大學(xué);2014年

4 李麗軍;基于機(jī)器人雙目立體視覺的三維重建[D];太原理工大學(xué);2012年

5 王興偉;基于DSP的汽車縱向避撞報(bào)警技術(shù)研究[D];山東理工大學(xué);2012年

6 蘇靖;車輛主動安全中碰撞臨界安全車距算法研究[D];湖南大學(xué);2011年

7 李英杰;汽車主動安全系統(tǒng)警告觸發(fā)方式研究[D];吉林大學(xué);2011年

8 閆新星;汽車三維安全防撞預(yù)警系統(tǒng)的設(shè)計(jì)與開發(fā)[D];太原理工大學(xué);2011年

9 張廣祥;基于駕駛行為的汽車主動防撞預(yù)警系統(tǒng)的安全車距研究[D];吉林大學(xué);2011年

10 曾翼;基于ARM+FMCW雷達(dá)的汽車防撞報(bào)警系統(tǒng)的研究[D];華南理工大學(xué);2011年

,

本文編號:2408988

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/2408988.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶25998***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com