流數(shù)據(jù)協(xié)議特征分析
[Abstract]:In recent years, network information security and protection has become a problem that can not be ignored, and the protection of network information security is also the main problem to be faced by national informatization. In some special environments, the use of unconventional private unknown protocols to steal secrets is becoming more and more common and harmful: at the same time, the unknown protocols are analyzed and identified from the acquired stream data. The application of common monitoring methods and protocol analysis and identification methods can not achieve the desired results. Stream data is a series of high-speed transmission, infinite length (increase at any time), order irreversible data sequence. The stream data described in this article is the stream data on the data link layer (i.e. binary 0 / 1 code). Because the data link laminar flow data, namely bit stream, is not semantic and single, at present, researchers mostly consider it from the application layer, but there is little research on the protocol recognition of binary stream data on the data link layer. So the protocol feature analysis of binary stream data is not a good solution. With the development of network protocols, protocol identification presents new features, such as encryption of some protocols, the use of dynamic ports, and the use of P2P. In order to achieve the goal of network information security, and to be able to warn the danger in time, the urgent need is to develop an efficient and efficient way to analyze and identify unknown protocols in such a complex network environment. A method with high accuracy. In the complex situation of network, the feature analysis of stream data protocol becomes a new research field. Based on the analysis and identification of known and unknown protocols, this paper holds that the characteristics of unknown protocols for stream data also have their fixed characteristics and rules, when a large number of fast and continuous data sequences are intercepted. It can be analyzed and identified by implementing certain technical means and methods, and the law information contained therein can be found. The method of analyzing and identifying unknown protocols from massive stream data is to mine the data and find the feature sequences contained therein, without comparing the feature sequences with those of known protocols. Fast extraction of frequent sequences is achieved. The contents of this thesis are as follows: firstly, the stream data (binary) transmitted on the data link layer is segmented reasonably, then the appropriate identification and feature selection algorithms are selected, and then the effectiveness of the proposed algorithm in protocol recognition is verified. Finally, the fingerprint information which can accurately describe the protocol is selected. In view of the above steps, this paper uses the clustering algorithm to cluster the data frames, and designs an unsupervised feature selection algorithm based on minimum redundancy and maximum correlation to extract the features of the data frames. Based on this basis, a feasible, efficient and low false alarm rate protocol analysis and recognition method is proposed for the analysis of a large number of fast, continuous arrival data sequences. The ability of the network to identify unknown protocols.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TN915.04
【相似文獻】
相關(guān)期刊論文 前10條
1 金澈清,錢衛(wèi)寧,周傲英;流數(shù)據(jù)分析與管理綜述[J];軟件學(xué)報;2004年08期
2 聶國梁;盧正鼎;;流數(shù)據(jù)實時近似求和的算法研究[J];小型微型計算機系統(tǒng);2005年10期
3 李衛(wèi)民;于守健;駱軼姝;樂嘉錦;;流數(shù)據(jù)管理的降載技術(shù):研究進展[J];計算機科學(xué);2007年06期
4 李子杰;鄭誠;;流數(shù)據(jù)和傳統(tǒng)數(shù)據(jù)存儲及管理方法比較研究[J];計算機技術(shù)與發(fā)展;2009年04期
5 潘靜;于宏偉;;流數(shù)據(jù)管理降載技術(shù)研究綜述[J];中國管理信息化;2009年21期
6 鄒永貴;龔海平;夏英;宋強;;一種面向流數(shù)據(jù)頻繁項挖掘的降載策略[J];計算機應(yīng)用研究;2011年04期
7 聶國梁;盧正鼎;聶國棟;;流數(shù)據(jù)近似統(tǒng)計算法研究[J];計算機科學(xué);2005年04期
8 魏晶晶;金培權(quán);龔育昌;岳麗華;;基于流數(shù)據(jù)的大對象數(shù)據(jù)緩沖機制[J];計算機工程;2006年11期
9 楊立;;基于權(quán)重的流數(shù)據(jù)頻繁項挖掘算法的應(yīng)用[J];微型機與應(yīng)用;2011年02期
10 尹為;張成虎;楊彬;;基于流數(shù)據(jù)頻繁項挖掘的可疑金融交易識別研究[J];西安交通大學(xué)學(xué)報(社會科學(xué)版);2011年05期
相關(guān)會議論文 前3條
1 劉正濤;毛宇光;吳莊;;一種新的流數(shù)據(jù)模型及其擴展[A];第二十二屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2005年
2 姚春芬;陳紅;;分布偏斜的流數(shù)據(jù)上的一種直方圖維護算法[A];第二十三屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2006年
3 孫煥良;趙法信;鮑玉斌;于戈;王大玲;;CD-Stream——一種基于空間劃分的流數(shù)據(jù)密度聚類算法[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2004年
相關(guān)博士學(xué)位論文 前6條
1 丁智國;流數(shù)據(jù)在線異常檢測方法研究[D];上海大學(xué);2015年
2 聶國梁;流數(shù)據(jù)統(tǒng)計算法研究[D];華中科技大學(xué);2006年
3 劉建偉;流數(shù)據(jù)查詢系統(tǒng)結(jié)構(gòu)及模式查詢算法的研究[D];東華大學(xué);2005年
4 李衛(wèi)民;流數(shù)據(jù)查詢算法若干關(guān)鍵技術(shù)研究[D];東華大學(xué);2008年
5 屠莉;流數(shù)據(jù)的頻繁項挖掘及聚類的關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2009年
6 陳筠翰;車載網(wǎng)絡(luò)的若干關(guān)鍵技術(shù)研究[D];吉林大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 肖丙賢;大規(guī)模流數(shù)據(jù)聚集查詢服務(wù)的生成與優(yōu)化[D];北方工業(yè)大學(xué);2016年
2 劉曉斐;分布式流處理系統(tǒng)操作共享優(yōu)化算法研究[D];吉林大學(xué);2016年
3 張媛;基于彈性分布式數(shù)據(jù)集的流數(shù)據(jù)聚類分析[D];華東師范大學(xué);2016年
4 王曾亦;基于內(nèi)存計算的流數(shù)據(jù)處理在飛行大數(shù)據(jù)的研究與應(yīng)用[D];電子科技大學(xué);2016年
5 王紹輝;流數(shù)據(jù)協(xié)議特征分析[D];電子科技大學(xué);2016年
6 馬可;基于Storm的流數(shù)據(jù)聚類挖掘算法的研究[D];南京郵電大學(xué);2016年
7 孔祥佳;基于海洋平臺監(jiān)測的流數(shù)據(jù)管理研究[D];大連理工大學(xué);2015年
8 張金川;基于反饋機制的流數(shù)據(jù)查詢[D];蘭州大學(xué);2007年
9 辛波;基于InfoSphere Streams的流數(shù)據(jù)分析及應(yīng)用[D];武漢理工大學(xué);2014年
10 李聰;支持大規(guī)模流數(shù)據(jù)在線處理動態(tài)數(shù)據(jù)分區(qū)算法研究[D];吉林大學(xué);2015年
,本文編號:2320958
本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/2320958.html