雷達(dá)目標(biāo)跟蹤中的波形選擇研究
[Abstract]:If the modern radar can adjust the transmitting waveform adaptively according to the change of the surrounding environment, and continuously acquire the information in the interaction with the target environment, it can measure the specific target effectively, reliably and stably. It will improve the overall performance of radar and adapt to more and more complex battlefield environment. Therefore, adaptive selection of transmitting waveforms is one of the current research hotspots. In this paper, the problem of adaptive waveform selection in tracking system is studied, and the adaptive waveform selection method for tracking system with or without clutter is presented. It provides a theoretical basis for further improving radar detection and tracking performance. The research work in this paper is as follows: 1. In this paper, we first study the problem of waveform adaptive selection in clutter free environment. The adaptive waveform selection algorithm based on Kalman filter is based on different moving states of the target. Particle swarm optimization (PSO) algorithm is used to design tracking waveform pulse width and frequency modulation slope. The influence of waveform parameter selection on measurement error and tracking accuracy is analyzed experimentally. Simulation results verify the effectiveness of the proposed algorithm. By analyzing the relationship between radar signal pulse width and tracking performance, the radar signal parameters are selected based on waveform selection criteria. An adaptive waveform selection algorithm for interactive multi-model (Interaction multiple model-imm) is implemented. According to the different moving states of the target, the pulse width of the transmitted signal at the next moment is designed adaptively, and the target tracking performance is improved. Simulation results show that the proposed algorithm is effective. 3. The waveform adaptive selection problem in clutter environment is analyzed. An adaptive waveform selection method is designed based on the interactive multi-model data association algorithm (Interacting multiple model probability data association / IMMPDA). Through two different waveform selection criteria, the performance of target tracking under dense clutter is improved, and the effectiveness of the proposed algorithm is verified by simulation.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN953
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 李萬(wàn)福;馬義德;;認(rèn)知雷達(dá)及其關(guān)鍵技術(shù)研究進(jìn)展[J];電子制作;2013年15期
2 糾博;劉宏偉;胡利平;吳順君;;針對(duì)目標(biāo)識(shí)別的波形優(yōu)化設(shè)計(jì)方法[J];電子與信息學(xué)報(bào);2009年11期
相關(guān)博士學(xué)位論文 前3條
1 范梅梅;認(rèn)知雷達(dá)目標(biāo)識(shí)別自適應(yīng)波形設(shè)計(jì)技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2012年
2 張勁東;自適應(yīng)雷達(dá)系統(tǒng)中波形分集技術(shù)的研究[D];南京理工大學(xué);2010年
3 王宏強(qiáng);目標(biāo)融合跟蹤技術(shù)及性能預(yù)測(cè)研究[D];中國(guó)人民解放軍國(guó)防科學(xué)技術(shù)大學(xué);2002年
相關(guān)碩士學(xué)位論文 前2條
1 牛建棟;MIMO認(rèn)知雷達(dá)波形設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2013年
2 夏洪恩;基于目標(biāo)跟蹤的波形自適應(yīng)選擇技術(shù)[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
,本文編號(hào):2197468
本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/2197468.html