基于總體經(jīng)驗(yàn)?zāi)B(tài)分解的多類(lèi)特征的運(yùn)動(dòng)想象腦電識(shí)別方法研究
[Abstract]:The complex, nonlinear and non-stationary characteristics of electroencephalogram (EEG) make it difficult to analyze and process, and its recognition effect depends on the difference of data set, and its performance is unstable. The general empirical mode decomposition (Ensemble empirical mode) method used in this paper is a strong adaptive signal processing method, and its good resolution in time-frequency domain is especially suitable for EEG recognition task processing. In this paper, the time-frequency features of Marginal spectra MS and instantaneous energy spectrum (Instantaneous energy spectra are extracted by using the (Intrinsic mode functionsimfs, which are obtained by EEMD decomposition, and by Hilbert transform. At the same time, the approximate entropy feature of nonlinear dynamics is extracted by adding windows, and the linear discriminant classifier (Linear discriminant analysisLDA is used as the classifier. The experimental results show that, The recognition rates of S2 and S3 were 79.60% and 87.77%, respectively. The average recognition rate of 9 subjects was 82.74, and the average recognition rate was higher than that of other methods using the same data set recently.
【作者單位】: 吉林大學(xué)通信工程學(xué)院分布式智能信息處理實(shí)驗(yàn)室;
【基金】:吉林省科技發(fā)展計(jì)劃自然基金(20150101191JC) 吉林大學(xué)研究生創(chuàng)新基金(2016092)資助~~
【分類(lèi)號(hào)】:R338
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 劉燕;穆振東;;運(yùn)動(dòng)想象機(jī)制研究[J];科技廣場(chǎng);2011年01期
相關(guān)碩士學(xué)位論文 前8條
1 王超;基于OpenVIBE的高性能運(yùn)動(dòng)想象在線(xiàn)腦—機(jī)接口系統(tǒng)研究[D];華南理工大學(xué);2016年
2 馬秀秀;基于運(yùn)動(dòng)想象的異步腦—機(jī)接口算法研究[D];哈爾濱工業(yè)大學(xué);2016年
3 王延達(dá);基于運(yùn)動(dòng)想象的腦電信號(hào)識(shí)別算法研究[D];南京航空航天大學(xué);2016年
4 張f歡;運(yùn)動(dòng)想象腦電信號(hào)的分析研究[D];上海交通大學(xué);2015年
5 姚家揚(yáng);運(yùn)動(dòng)想象腦電處理及其模式識(shí)別方法研究[D];杭州電子科技大學(xué);2016年
6 蔡慧;BCI中的運(yùn)動(dòng)想象腦電信號(hào)處理方法研究[D];杭州電子科技大學(xué);2016年
7 張煥;四類(lèi)運(yùn)動(dòng)想象任務(wù)的腦電信號(hào)識(shí)別算法研究[D];山西大學(xué);2016年
8 易振華;運(yùn)動(dòng)想象腦電信號(hào)的分析與處理方法研究[D];北京交通大學(xué);2008年
,本文編號(hào):2169045
本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/2169045.html