無線網絡多樣性通信請求的調度算法研究
本文選題:數(shù)據(jù)通信 + 多樣性。 參考:《哈爾濱工業(yè)大學》2017年博士論文
【摘要】:伴隨著無線通信技術的不斷發(fā)展、移動設備功能的不斷增加、以及嵌入式技術等關鍵技術的不斷普及和應用,3G/4G手機網絡、WiFi網絡、D2D網絡等無線網絡成為了支持各種場景中信息流通的核心渠道之一。這些場景引入了更多行為存在多樣性的參與者,例如運行不同應用的智能設備持有者、不同作用的感知部件、控制部件等。這些參與者在產生大規(guī)模的信息流通的同時,通常有各異的并且復雜的行為目的,因此相應的會產生多種多樣的數(shù)據(jù)通信要求。這對無線網絡的設計和資源調配提出了一系列新的挑戰(zhàn),需要對包括鏈路層數(shù)據(jù)傳輸調度、網絡結構拓撲設計、媒體存取控制層協(xié)議、應用層資源分配在內的多個方面進行重新思考。其中鏈路層數(shù)據(jù)傳輸調度方案是關鍵環(huán)節(jié)之一,它在給定網路中各鏈路的信道質量、沖突情況等因素的前提下,確定在各個時間段內進行傳輸?shù)脑O備對。更具體的,鏈路層數(shù)據(jù)傳輸調度方案能夠根據(jù)各個參與者的通信請求,在不同網絡環(huán)境和通信負載下合理為各個參與者分配傳輸資源,從而保證這些場景下系統(tǒng)的正常運行。然而,現(xiàn)有的數(shù)據(jù)傳輸調度方法還不夠完善,仍以最大化網絡利用率、保證鏈路質量等作為主要優(yōu)化目標,存在著一些缺陷,主要有以下幾點:第一,這些方法需要確保參與者行為某種程度的一致性,不能對多樣性的情況進行分析和給出相應的傳輸資源分配方案;第二,這些方法主要從單條鏈路所獲服務衡量整個系統(tǒng)的性能,不能從場景中不同應用所獲得的服務進行評估,同時給出相應的確保各應用正常運行的傳輸資源分配方案;第三,考慮到參與者時常為請求各異的個人,這些方法很難去直接同參與者的用戶體驗相聯(lián)系,特別是在網絡帶寬資源占用率極高的情況下。本文針對無線網絡中參與者的多樣性行為,主要包括多樣性的通信請求模型、多樣性的服務質量要求、多樣性的應用傳輸要求、多樣性用戶行為下用戶體驗保證等關鍵問題給出了一系列的問題模型化和算法研究結果,很好的解決了上述問題,主要研究內容如下:(1)本文研究了滿足多樣性多播通信的傳輸調度方案。為了克服現(xiàn)有工作需要假設各個設備的多播通信模型保持一定程度一致的局限性,本文在第二章分析了在各個設備可以任意確定其多播通信中目的節(jié)點情況下整個網絡的性能表現(xiàn),以及達到優(yōu)化網絡性能的數(shù)據(jù)傳輸調度方案。本文首先提出了一種新的網絡模型,該模型允許各個設備在多跳無線網絡中在任意區(qū)域內選擇任意個數(shù)不超過節(jié)點上限的目的節(jié)點,更加符合參與者行為多樣性的特點。針對所提出的模型,本文分析了無線網絡所能達到的網絡容量上界,其中網絡容量表示無線網絡在一定時長內所能傳輸?shù)臄?shù)據(jù)總量。在上界的具體分析過程中,本文提出了一種新的指標,用于刻畫單節(jié)點向其目的節(jié)點傳輸數(shù)據(jù)時需要面對的資源競爭激烈程度,這一指標能夠幫助推導出網絡容量的上界。隨后,本文擴展一種經典數(shù)據(jù)傳輸調度方案,設計出了一種供各節(jié)點進行傳輸?shù)姆桨?并且通過理論分析證明了這一方案的可達容量下界同網絡容量上界是同階緊湊的,進而證明該方案的優(yōu)化行。最后,本文討論并通過實驗驗證了設備通信模型的多樣性對網絡總的容量的影響。(2)本文研究了滿足服務間隔要求多樣性的傳輸調度方案。為了克服現(xiàn)有數(shù)據(jù)傳輸調度方案無法滿足一般無線網絡中設備存在的不同服務間隔的要求這一現(xiàn)狀,本文在第三章研究了如何在滿足各個設備不同服務間隔的前提下,同時保證網絡資源的充分利用。本文首先提出了一種新的網絡模型以及網絡穩(wěn)定性的定義,能夠刻畫在包含不同服務間隔要求的前提下網絡穩(wěn)定的含義。隨后,本文證明了優(yōu)化的數(shù)據(jù)傳輸調度方案設計問題為NP完全問題,進而提出了一種相應的近似數(shù)據(jù)傳輸調度策略,該策略綜合兩種已有的經典方法,在考慮各設備服務間隔的前提下兼顧了網絡資源的利用率。本文證明了在一中常見的無線網絡模型,即并置網絡中,該策略能達到優(yōu)化的性能,并且進一步分析了不同的服務間隔對網絡總體性能及單個設備數(shù)據(jù)隊列長度的影響。最后本文通過實驗驗證了所提出的策略能夠顯著的改觀各設備間不同服務間隔的保證情況。(3)本文研究了滿足不同應用多樣性通信請求的數(shù)據(jù)傳輸調度方案。為了克服目前的數(shù)據(jù)傳輸調度方案大都針對鏈路級表現(xiàn)進行優(yōu)化的局限性,本文在第四章研究了如何在考慮到各個應用及其具體運行任務對數(shù)據(jù)傳輸存在不同要求的前提下,設計數(shù)據(jù)傳輸調度方案。本文首先提出了一種新的網絡模型及網絡穩(wěn)定性定義,該模型能夠形式化描述各設備上不同應用及任務的通信請求,并且將網絡穩(wěn)定性同一段時間內傳輸失敗的任務個數(shù)相聯(lián)系。具體的,本文提出了一種新的指標,用于刻畫在各設備上,屬于某應用的一個具體任務在各個時間點的最小數(shù)據(jù)通信請求。這一指標能夠用于表示各個應用的通信請求多樣性。而后,本文證明了優(yōu)化調度策略的設計是一個NP完全問題,提出了一種新的數(shù)據(jù)傳輸調度策略,該策略能夠根據(jù)各個任務對網絡資源需求的緊迫程度進行調度,并且保證對網絡資源的充分利用。本文隨后分析了這一策略的效率性能,并且證明了其在并置網絡中可以達到優(yōu)化的效果。本文同樣分析了優(yōu)化調度策略的設計及證明思路,并且給出了其時間開銷。最后,本文通過大量實驗驗證了所提出的算法能夠顯著提高各個設備在其各個應用上的數(shù)據(jù)傳輸表現(xiàn)。(4)本文研究了包含多樣性通信請求下滿足用戶體驗的數(shù)據(jù)傳輸調度方案。為了克服現(xiàn)有的數(shù)據(jù)傳輸調度方案無法在參與者通信請求存在差異性的情況下平衡用戶體驗這一局限性,本文在第五章研究了用有限的網絡資源服務最大數(shù)量的參與者,并且保證各參與者用戶體驗的問題。本文首先提出了一種改進的網絡模型,該模型刻畫了不同參與者的不同數(shù)據(jù)通信請求,并且為各用戶提供了一個用戶體驗的保證。同時,本文提出了一種相應的網絡穩(wěn)定性定義,與一段時間內網絡中成功進行數(shù)據(jù)傳輸并且滿足用戶體驗要求的參與者數(shù)量相關;谒o出的模型,本文首先分析了優(yōu)化策略的設計問題是NP完全問題,設計了一個包含兩階段的近似數(shù)據(jù)傳輸調度方案,該方案分別確定新到參與者的接入決策和接入點分配,以及針對已接入的參與者的網絡資源分配方案。隨后,本文分析了這一策略的時間空間復雜度,以及方案所能達到的性能比。最后本文通過模擬實驗驗證了該方案在確保各個用戶服務體驗的前提下,能夠提高網絡所服務的總用戶個數(shù)。
[Abstract]:With the continuous development of wireless communication technology, the increasing function of mobile devices, and the continuous popularization and application of key technologies such as embedded technology, 3G/4G mobile network, WiFi network, D2D network and other wireless networks have become one of the core channels to support the flow of information in various scenes. Sample participants, such as intelligent equipment holders running different applications, different functional components, control components, and so on. These participants usually have different and complex behavioral purposes while producing large-scale information circulation, and accordingly produce a variety of data communication requirements. A series of new challenges are proposed, including link layer data transmission scheduling, network structure topology design, media access control layer protocol, and application layer resource allocation. The link layer data transfer scheduling scheme is one of the key links in a given network link. On the premise of channel quality, conflict situation and other factors, the equipment for transmission in each time period is determined. More specifically, the link layer data transmission scheduling scheme can allocate the transmission resources reasonably for each participant in different network environment and communication load to guarantee these scenarios, according to the communication requests of each participant. However, the existing system is running properly. However, the existing data transmission scheduling methods are still not perfect. There are still some defects in the main optimization objectives, such as maximizing the network utilization and ensuring the link quality. The main problems are as follows: first, these methods need to ensure the consistency of the participants' behavior to a certain extent and not to the diversity. Second, these methods mainly measure the performance of the whole system from the service obtained by the single link, and can not evaluate the service obtained from the different applications in the scene. At the same time, the corresponding transmission resource allocation scheme to ensure the normal operation of each application is given; and third, taking into account the participation of the system. These methods are often difficult to relate to the user experience of the participants, especially when the occupancy rate of the network bandwidth is very high. This paper focuses on the diversity behavior of the participants in the wireless network, mainly including the diversity of the communication request model, the diversity of the quality of service and diversity. A series of problem modeling and algorithm research results are given in the application of transmission requirements and user experience assurance in diversity user behavior. The main research contents are as follows: (1) this paper studies the transmission scheduling scheme satisfying the diversity multicast communication. In order to overcome the existing work, it is necessary to assume the various assumptions. In the second chapter, the performance of the entire network and the data transmission scheduling scheme to optimize the network performance are analyzed in this paper. In this paper, a new network model is proposed in this paper. The model allows each device to choose a destination node with any number of no more than the upper limit of the node in any area in a multi hop wireless network, which is more consistent with the diversity of participants' behavior. In this paper, the network capacity up to the proposed model is analyzed. The network capacity indicates that the wireless network is certain. In the specific analysis process of the upper bound, this paper presents a new index, which is used to describe the intensity of the resource competition that the single node has to face when it transfers data to its destination node. This index can help to derive the upper bound of the network capacity. Then, this paper extends a classic data transmission. A scheme is designed for the transmission of each node. Through theoretical analysis, it is proved that the upper bound of the capacity of the scheme is the same as the upper bound of the network capacity. Then the optimization of the scheme is proved. Finally, the paper discusses and validates the total network capacity of the diversity of the equipment communication model by the experiment. (2) this paper studies the transmission scheduling scheme that satisfies the diversity of service interval requirements. In order to overcome the current situation that the existing data transmission scheduling scheme can not meet the requirements of the different service intervals of the equipment in the general wireless network, this paper studies how to meet the different service intervals of each device in the third chapter. At the same time, a new network model and the definition of network stability are proposed, which can describe the meaning of network stability under the requirements of different service intervals. Then, this paper proves that the optimal design of data transmission scheduling scheme is a NP complete problem, and then a new problem is proposed. The corresponding approximate data transfer scheduling strategy, which combines two existing classical methods, considers the utilization of network resources on the premise of considering the service interval of each device. This paper proves that the common wireless network model, that is, in the parallel network, can achieve optimization performance and further analyze the difference. The effect of service interval on the overall performance of the network and the length of the data queue of a single device. Finally, this paper proves that the proposed strategy can significantly improve the guarantee of different service intervals between various devices. (3) this paper studies the data transmission scheduling scheme which satisfies the request of different application diversity communications. The previous data transmission scheduling schemes are mostly aimed at the limitation of link level performance optimization. In the fourth chapter, this paper studies how to design a data transfer scheduling scheme on the premise of different requirements for data transmission in each application and its specific operation tasks. This paper first presents a new network model and network stability. Qualitative definition, the model can formally describe the communication requests of different applications and tasks on each device, and connect the number of tasks that fail in the same period of time. In particular, this paper presents a new index to describe a specific task on each device at every time point. The minimum data communication request. This index can be used to represent the diversity of communication requests for each application. Then, this paper proves that the design of the optimal scheduling strategy is a NP complete problem, and proposes a new data transfer scheduling strategy, which can schedule the urgency of the network resource requirements according to each task. This paper then analyzes the efficiency performance of this strategy and proves that it can achieve the optimization effect in the parallel network. This paper also analyzes the design and proof of the optimal scheduling strategy and gives its time overhead. The algorithm can significantly improve the data transmission performance of each device in its various applications. (4) this paper studies the data transmission scheduling scheme which contains the diversity communication request to meet the user experience. In order to overcome the existing data transmission scheduling scheme can not balance the user experience under the presence of the participants' communication requests. In the fifth chapter, in this paper, we study the largest number of participants with limited network resources and guarantee the user experience of each participant. This paper first presents an improved network model, which depicts different participants' different data communication requests, and provides a user experience for each user. At the same time, this paper proposes a corresponding definition of network stability, which is related to the number of participants who successfully carry out data transmission in a period of time and meet the requirements of user experience. Based on the model given, this paper first analyzes the design problem of the optimization strategy is the NP complete problem, and designs a close two phase. Like data transmission scheduling scheme, the scheme determines the access decision and access point allocation of the new participants and the network resource allocation scheme for the participants that have been connected. Then, this paper analyzes the time space complexity of the strategy and the performance ratio that the scheme can achieve. The scheme can improve the total number of users served by the network under the premise of ensuring the experience of each user service.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TN92
【相似文獻】
相關期刊論文 前10條
1 康永紅 ,歐陽金曼;簡單高效的網絡數(shù)據(jù)傳輸編程[J];電腦開發(fā)與應用;2002年03期
2 董全保;;淺議網絡數(shù)據(jù)傳輸和安全[J];中小企業(yè)管理與科技(下旬刊);2013年08期
3 曹京生;;N∶N網絡數(shù)據(jù)傳輸技巧[J];機械制造與自動化;2006年06期
4 許富龍;劉明;李建平;;延遲評估的車載自組織網絡數(shù)據(jù)傳輸協(xié)議[J];計算機工程與應用;2011年03期
5 何東升;李憲彬;;3G網絡數(shù)據(jù)傳輸應用[J];科技傳播;2012年15期
6 董云耀;網絡數(shù)據(jù)傳輸技術及實現(xiàn)[J];計算機輔助設計與圖形學學報;1991年02期
7 ;網絡數(shù)據(jù)傳輸創(chuàng)新紀錄[J];科學之友(上旬);2013年01期
8 陳周國;蒲石;祝世雄;;匿名網絡追蹤溯源綜述[J];計算機研究與發(fā)展;2012年S2期
9 逄麗敏;構筑安全的網絡數(shù)據(jù)傳輸環(huán)境[J];中國傳媒科技;2004年04期
10 ;全局負載均衡流量 優(yōu)化網絡數(shù)據(jù)傳輸[J];信息安全與通信保密;2005年03期
相關會議論文 前3條
1 路蘭;楊洪勇;;互聯(lián)網絡模型及其抗毀性分析[A];2009年中國智能自動化會議論文集(第五分冊)[東南大學學報(增刊)][C];2009年
2 李海江;;基于網絡的工程CAD系統(tǒng)研究[A];提高全民科學素質、建設創(chuàng)新型國家——2006中國科協(xié)年會論文集(下冊)[C];2006年
3 劉歡;陳潔;陳建香;劉暢;盧蓓蓉;;技術視角下的高校信息化應用用戶體驗研究[A];中國高等教育學會教育信息化分會第十二次學術年會論文集[C];2014年
相關重要報紙文章 前10條
1 趙朝霞 馬莉 衛(wèi)功兵;無線網絡在梅鋼產品跟蹤與管理的應用[N];世界金屬導報;2006年
2 ;智能化社區(qū)網絡趨熱[N];人民郵電;2000年
3 劉秀榮;歐盟投資研發(fā)LTE為4G打基礎[N];人民郵電;2009年
4 ;如何方便可靠地接入VPN[N];計算機世界;2003年
5 朱建軍 編譯;解密DSL的QoS[N];計算機世界;2005年
6 本報記者 劉菁菁;用戶體驗設計的魔力[N];計算機世界;2009年
7 亞當·理查德森 呂能能 青蛙設計戰(zhàn)略總監(jiān)和傳訊專員;笑看用戶體驗72變[N];經濟觀察報;2011年
8 多琳·羅倫佐;商用品牌也追求用戶體驗[N];中華合作時報;2013年
9 記者 歐燕燕;“無線?凇苯ㄔO進入用戶體驗階段[N];人民郵電;2013年
10 證券時報記者 仁際宇;用戶體驗決定技術命運[N];證券時報;2013年
相關博士學位論文 前10條
1 鄭旭;無線網絡多樣性通信請求的調度算法研究[D];哈爾濱工業(yè)大學;2017年
2 高振翔;機會網絡數(shù)據(jù)傳輸關鍵技術研究[D];北京郵電大學;2015年
3 林文軒;認知無線網絡中協(xié)作頻譜感知策略與性能優(yōu)化分析[D];北京郵電大學;2015年
4 卓越;復雜網絡的拓撲生存性與數(shù)據(jù)傳輸相關問題研究[D];電子科技大學;2011年
5 黃蓉;無線中繼網絡高能效資源管理和傳輸機制研究[D];北京郵電大學;2013年
6 羅霄翔;QoS驅動的現(xiàn)代服務業(yè)服務網絡關鍵技術研究[D];北京郵電大學;2011年
7 周瀏陽;網絡控制系統(tǒng)中調度策略的設計與延時的處理[D];哈爾濱工業(yè)大學;2015年
8 Rabee Furkan Hassan Saleh;[D];電子科技大學;2015年
9 張毅;面向用戶體驗的文件分發(fā)系統(tǒng)調度機制優(yōu)化研究[D];北京交通大學;2016年
10 吳磊;面向電子制造裝備界面的用戶體驗多維度評估機制及模型研究[D];華中科技大學;2016年
相關碩士學位論文 前10條
1 鐘俊;DTN網絡數(shù)據(jù)傳輸性能優(yōu)化研究[D];電子科技大學;2014年
2 倪仲余;無線Mesh網絡基于P2P的數(shù)據(jù)可靠通信技術的研究[D];西華大學;2015年
3 劉中山;高BDP網絡加速網關設計與實現(xiàn)[D];西安電子科技大學;2015年
4 李承林;網絡數(shù)據(jù)傳輸接口設備——光貓的開發(fā)研制[D];四川大學;2005年
5 趙耀;基于編碼的無線網絡數(shù)據(jù)傳輸算法的研究[D];復旦大學;2011年
6 李智;車載自組織網絡中的數(shù)據(jù)傳輸與交通信息感知方法研究[D];上海交通大學;2013年
7 吳文博;基于SDH技術網絡數(shù)據(jù)傳輸?shù)脑O計與實現(xiàn)[D];復旦大學;2008年
8 李富佳;基于網絡能效的無線資源優(yōu)化算法研究[D];重慶郵電大學;2015年
9 洪融;基于CDMA2000 1X及EVDO網絡的優(yōu)化分析研究[D];北京郵電大學;2012年
10 王安;面向節(jié)能的移動網絡傳輸關鍵技術研究[D];北京郵電大學;2013年
,本文編號:1945537
本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/1945537.html