天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 信息工程論文 >

人體語音特征提取身份優(yōu)化驗證仿真研究

發(fā)布時間:2018-05-05 08:16

  本文選題:人體發(fā)聲過程 + 音段韻律。 參考:《計算機仿真》2017年02期


【摘要】:對人體語音征提取身份優(yōu)化驗證,可為說話人識別奠定基礎(chǔ)。進行人體語音征提取身份驗證時,應(yīng)分析人體語音音段韻律特征矢量序列,提取最優(yōu)音段韻律的高維特征值和特征向量,但是傳統(tǒng)方法通過對標注音節(jié)的持續(xù)采樣點數(shù)進行分析完成檢測,但是不能精確分析人體語音音段韻律特征矢量序列,無法準確提取最優(yōu)音段韻律的高維特征值和特征向量,存在人體語音征提取身份驗證誤差大的問題。提出一種改進混沌的人體語音征提取身份優(yōu)化驗證方法。上述方法先融合于混沌理論采集人體發(fā)聲過程中音段韻律原始信號,將原始韻律信號映射到高維空間實現(xiàn)音段韻律相空間重構(gòu),映射相空間中音段韻律間相鄰軌道發(fā)散的平均變化率,然后利用K-均值聚類的方法對音段韻律的語音幀進行聚類,獲取規(guī)范化的音段韻律特征矢量序列,將規(guī)范化的音段韻律特征矢量序列投影到音段韻律高維核空間中,提取最優(yōu)音段韻律的高維特征值和特征向量,依據(jù)人體語音征提取身份優(yōu)化驗證,仿真結(jié)果證明,所提方法特征提取精確度高,能夠有效地提升人體語音征提取身份驗證的辨識率。
[Abstract]:The identification optimization of human speech feature extraction can lay a foundation for speaker recognition. In the process of human speech feature extraction, we should analyze the sequence of prosodic vector of human speech segment, and extract the high dimensional characteristic value and feature vector of the optimal segment prosody. However, the traditional methods can not accurately analyze the sequence of prosodic feature vectors of human speech segments, and can not accurately extract the high dimensional characteristic values and feature vectors of the optimal segment prosody by analyzing the number of continuous sampling points of the tagged syllables, but the traditional methods can not accurately analyze the sequence of prosodic feature vectors of human speech segments. There is a problem of large error in the identification of human speech sign extraction. An improved chaotic identification method for human speech feature extraction is proposed. Firstly, the method is integrated into chaos theory to collect the prosody signal of segment in the process of human voice, and the original prosodic signal is mapped to the high-dimensional space to reconstruct the phase space of segment prosody. In the mapping phase space, the average variation rate of the divergence of adjacent tracks between segments prosody is obtained, and then the speech frames of segment prosody are clustered by K-means clustering method, and the normalized segment prosodic characteristic vector sequences are obtained. The normalized segment prosodic feature vector sequence is projected into the segment prosodic high-dimensional kernel space, the high-dimensional characteristic value and eigenvector of the optimal segment prosody are extracted, and the identity optimization verification is extracted according to the human speech sign. The simulation results prove that, The proposed method has high accuracy of feature extraction and can effectively improve the identification rate of human speech feature extraction.
【作者單位】: 商丘學(xué)院計算機工程學(xué)院;蘭州理工大學(xué)理學(xué)院;
【分類號】:TN912.3

【相似文獻】

相關(guān)期刊論文 前1條

1 Par Henri Frei ,王力;書評——MONOSYLLABISME ET POLYSYLLABISME DANS LES EMPRUNTS LINGUISTIQUES,AVEC UN INVENTAIRE DES PHONEMES DE PEKIN ET DE TOKIO.[J];清華大學(xué)學(xué)報(自然科學(xué)版);1937年02期

相關(guān)會議論文 前3條

1 曹劍芬;鄭玉玲;;韻律標志性的音段發(fā)音增強[A];第九屆全國人機語音通訊學(xué)術(shù)會議論文集[C];2007年

2 陳肖霞;;對音段減縮的聲學(xué)分析[A];2006’和諧開發(fā)中國西部聲學(xué)學(xué)術(shù)交流會論文集[C];2006年

3 張璐;;An Analysis of Beijing Mandarin Vocalic and Consonantal Segments under Dependency Phonology[A];第六屆全國現(xiàn)代語音學(xué)學(xué)術(shù)會議論文集(下)[C];2003年

相關(guān)重要報紙文章 前1條

1 ;探索普通話自然連續(xù)語音之規(guī)律[N];光明日報;2001年

相關(guān)碩士學(xué)位論文 前3條

1 周麗;音段結(jié)構(gòu)獨值特征假設(shè)[D];湖南大學(xué);2006年

2 虞麗君;普通話中音段與聲調(diào)短時記憶的分離及其機制[D];華東師范大學(xué);2015年

3 王喜霞;漢語長沙方言的音節(jié)結(jié)構(gòu)與音段系統(tǒng)[D];湖南大學(xué);2004年

,

本文編號:1846927

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/1846927.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2269c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com