干擾場景下車輛移動通信網(wǎng)絡性能分析及優(yōu)化設計
本文選題:干擾場景 + 節(jié)點移動; 參考:《西南交通大學》2017年博士論文
【摘要】:隨著無線通信技術和國家交通事業(yè)的飛速發(fā)展,車聯(lián)網(wǎng)作為第五代(5G)移動通信系統(tǒng)的一個重要應用,越來越受到人們的關注。在未來車輛移動通信網(wǎng)絡中,不僅要在“量”上要滿足移動用戶多樣化業(yè)務需求,還要在“質(zhì)”上確保移動用戶以更低的時延獲得更大的傳輸速率。隨著車載用戶數(shù)量不斷增加,在信息傳輸過程中,接收節(jié)點受到干擾的可能性越來越大。針對干擾和移動這兩大問題,本文考慮干擾處于高動態(tài)場景下,即每一時刻,都會有新的干擾節(jié)點產(chǎn)生,從理論上分析了車輛移動通信網(wǎng)絡的性能及其相應的系統(tǒng)優(yōu)化設計。首先,本文研究高速公路場景,即源-中繼-目的節(jié)點移動場景的通信鏈路中斷概率和最優(yōu)功率分配方案。在本研究中,假設中繼節(jié)點只受到噪聲的影響,目的節(jié)點只受到共道干擾(co-channel interference, CCI)的影響,并且干擾處于高移動狀態(tài),即每一個時刻,干擾節(jié)點的數(shù)目和位置都有所不同。在這一模型的基礎上,本文得到了中斷概率的分析表達式和緊的下界,分析了兩跳鏈路對于端到端中斷概率的影響,源節(jié)點、中繼節(jié)點的發(fā)送功率對于端到端中斷概率的影響。此外,得到在源-中繼-目的節(jié)點鏈路移動過程中,中斷概率的變化情況。當源節(jié)點和中繼節(jié)點的發(fā)送功率之和受限時,得到了中斷概率最小的最優(yōu)功率分配方案。接著,本文分析多跳車輛移動通信網(wǎng)絡的端到端時延,并得到時延最小的最優(yōu)跳數(shù)的分析結果。在傳統(tǒng)的無線通信網(wǎng)絡時延分析中,通常假設中繼節(jié)點等間距分布在源節(jié)點和目的節(jié)點的連線上,并忽略了多跳鏈路跳數(shù)對于時延的影響。事實上,隨著跳數(shù)增多,每一跳的距離減小有利于時延的減小,但同時需要處理數(shù)據(jù)的時間會增多,從而使時延變大。本文對這一場景進行了擴展,考慮中繼服從三種分布場景下的端到端時延性能及最優(yōu)跳數(shù)分析,包括中繼等間距分布、中繼服從均勻分布以及中繼服從隨機路徑點移動(random waypoint mobility,RWPM)模型分布。假設單跳網(wǎng)絡在干擾受限和噪聲受限場景下有相同的接收信干比(signal-to-interference ratio,SIR)和信噪比(signal-to-noise ratio, SNR),論文分析了單跳通信網(wǎng)絡在這兩種場景下的時延性能。通過比較中繼等間距分布和中繼服從均勻分布這兩種場景的時延性能,研究表明選擇在源節(jié)點和目的節(jié)點連線上等間距分布的中繼節(jié)點可以更有效地降低時延。中繼服從均勻分布類似于靜止中繼節(jié)點的場景,中繼服從RWPM模型可視為移動中繼節(jié)點場景。通過比較這兩種場景,本文的分析和仿真實驗表明,移動性有利于減小多跳信息傳輸?shù)臅r延。其次,本文分析了干擾受限場景車輛移動通信網(wǎng)絡的連通度與移動性之間的關系。在傳統(tǒng)的無線通信網(wǎng)絡連通概率分析工作中,大多假設接收節(jié)點不受干擾的影響,忽略了節(jié)點密度以及移動場景下節(jié)點移動性對于連通概率的影響。當考慮節(jié)點之間的干擾時,節(jié)點密度增大,節(jié)點之間的距離減小,則接收節(jié)點接收有用信號的強度增大,從而有利于提高通信質(zhì)量和連通概率。但節(jié)點密度增大,將導致接收節(jié)點受到的干擾增強,從而通信質(zhì)量下降,直接影響網(wǎng)絡的連通概率。根據(jù)這一基本想法,本文推導出干擾場景下有限區(qū)間內(nèi)線性網(wǎng)絡全連通概率的上、下界,并得到全連通概率是節(jié)點密度的擬凹函數(shù)。在此基礎上,分析了移動場景下節(jié)點移動的平均速度與有限線性網(wǎng)絡連通概率之間的關系。再次,本文分析了隨機多址接入?yún)f(xié)議下,半雙工(half-duplex)和全雙工(full-duplex) 單跳信息傳輸系統(tǒng) 的隨機接入傳輸容量 (random access transport capacity,RATC)。假設接收節(jié)點選擇離它最近的節(jié)點作為發(fā)送節(jié)點進行傳輸,從而節(jié)點之間的距離不是固定值,而是一個隨機變量。當節(jié)點的隨機接入概率增大時,意味著發(fā)送節(jié)點發(fā)送信息的機會增多,隨機接入傳輸容量可能提高,但同時,接收節(jié)點受到的共道干擾節(jié)點數(shù)目增多,從而成功傳輸?shù)母怕蕼p小,傳輸次數(shù)可能增多,隨機接入傳輸容量可能減小。類似地,當SIR閾值增大時,信道的最大傳輸速率會增大,隨機接入傳輸容量可能增大,但同時意味著單跳鏈路的成功概率減小,隨機接入傳輸容量可能變小。通過仿真實驗驗證了,隨機接入傳輸容量是節(jié)點的發(fā)送概率、SIR閾值的擬凹函數(shù),并得到全雙工系統(tǒng)的性能優(yōu)于半雙工系統(tǒng)的性能。最后,本文分析線性多跳譯碼轉(zhuǎn)發(fā)(decode-and-forward,DF)通信鏈路的吞吐量并得到對應系統(tǒng)的優(yōu)化設計。在傳統(tǒng)的無線通信網(wǎng)絡吞吐量分析中,一般僅分析某一個系統(tǒng)參數(shù)與吞吐量之間的關系,少有系統(tǒng)參數(shù)聯(lián)合優(yōu)化的方案分析。本文研究了多跳無線通信網(wǎng)絡的跳數(shù)、SIR閾值與吞吐量之間的關系,揭示了固定跳數(shù)或SIR閾值,吞吐量是另一個參數(shù)的擬凹函數(shù)。根據(jù)吞吐量函數(shù)的結構特點,得到以多跳無線通信網(wǎng)絡吞吐量最大為目標,聯(lián)合優(yōu)化向量(跳數(shù)、SIR閾值)的算法。
[Abstract]:With the rapid development of wireless communication technology and national transportation, the Internet of vehicles, as an important application of the fifth generation (5G) mobile communication system, has attracted more and more attention. In the future vehicle mobile communication network, it is not only to meet the needs of the mobile users in the "quantity", but also to ensure the movement on the "quality". With the increasing number of users on the vehicle, the probability of receiving nodes is more and more likely to be disturbed in the process of information transmission. Considering the two major problems of interference and movement, this paper considers that the interference is in high dynamic scene, that is, a new interference node will be generated at every moment. The performance of the vehicle mobile communication network and its corresponding system optimization design are analyzed. First, this paper studies the highway scene, the communication link interrupt probability and the optimal power allocation scheme of the source relay destination node mobile scene. In this study, the relay node is assumed to be only affected by the noise, the destination node is only shared by the common channel. The interference (co-channel interference, CCI) is affected and the interference is in a high mobility state, that is, the number and location of the interference nodes are different at every moment. On the basis of this model, the analysis expression and the tight lower bounds of the interruption probability are obtained, and the influence of the two hop links on the end to end interrupt probability is analyzed, and the source node is analyzed. Point, the transmission power of the relay node affects the end to end interrupt probability. In addition, the change of the interruption probability is obtained during the link movement of the source relay destination node. When the sum of the transmission power of the source and relay nodes is limited, the optimal power allocation scheme is obtained for the minimum interruption probability. Then, the paper analyzes the multi hop vehicle. The end to end delay of a mobile communication network is analyzed. In the traditional time delay analysis of the wireless communication network, the distance between the relay nodes is usually assumed to be distributed on the connection of the source node and the destination node, and the effect of the multiple hop number on the delay is ignored. In fact, the number of hops increases as the number of hops increases. The reduction of each jump is beneficial to the decrease of time delay, but the time for processing data is increased and the time delay becomes larger. This paper extends this scene to consider the end to end delay performance and optimal hops analysis under three distributed scenarios, including the relay equidistance distribution, the relay obeys the uniform distribution, and the relay obeys the uniform distribution, and the relay obeys the uniform distribution, and the relay obeys the uniform distribution. The relay obeys the random path point movement (random waypoint mobility, RWPM) model distribution. It is assumed that the single hop network has the same receiver signal to dry ratio (signal-to-interference ratio, SIR) and the signal to noise ratio (signal-to-noise ratio, SNR) under the restricted and noisy scene. The paper analyzes the delay of the single hop communication network in these two scenarios. Performance. By comparing the delay performance of the two scenarios with the relay equidistance distribution and the relay obeying the uniform distribution, it is shown that the relay nodes selected in the source node and the destination node is more effective in reducing the delay. The relay obeys the stationary relay node and the relay obeys the RWPM model. It is considered as a mobile relay scene. By comparing these two scenarios, the analysis and simulation experiments in this paper show that mobility is beneficial to reduce the delay of multi hop information transmission. Secondly, this paper analyzes the connection between the connectivity and mobility of the vehicle mobile communication network with limited interference scene. In the analysis, most of the work assumes that the receiving node is not affected by interference, ignoring the node density and the influence of node mobility on the connectivity probability. When considering the interference between nodes, the density of nodes increases and the distance between nodes decreases, and the intensity of receiving nodes to receive useful signals increases, which is beneficial to the improvement of the connection. But the density of the node increases, which will lead to the enhancement of the interference received by the receiving node, thus the communication quality is reduced and the connectivity probability of the network is directly affected. Based on this basic idea, the upper and lower bounds of the total connectivity probability of the linear network in the finite interval under the interference scene are derived, and the total connectivity probability is the node density. On this basis, the relationship between the average velocity of node movement and the connectivity probability of a finite linear network is analyzed on this basis. The random access capacity (random access T) of the semi duplex (half-duplex) and full duplex (full-duplex) single hop information transmission system under the random multiple access protocol (random access Protocol) is analyzed. Ransport capacity, RATC). Assuming the receiving node selects the nearest node as the transmission node, the distance between the nodes is not a fixed value, but a random variable. When the node's random access probability increases, it means that the opportunity for sending the nodes to send the information is increased, but the capacity of the random access transmission may be improved, but the capacity of the random access transmission may be improved, but the probability of the random access transmission may be increased, but the capacity of the random access transmission may be improved, but At the same time, the number of common channel interference nodes received by the receiving node is increased, thus the probability of successful transmission decreases, the number of transmission may increase, and the random access transmission capacity may be reduced. Similarly, when the SIR threshold increases, the maximum transmission rate of the channel will increase and the random access transmission capacity may increase, but it also means the single hop link is formed at the same time. The power probability decreases and the random access transmission capacity may be smaller. The simulation experiment shows that the random access transmission capacity is the node's sending probability, the quasi concave function of the SIR threshold, and the performance of the full duplex system is superior to the half duplex system. Finally, this paper analyzes the linear multi hop code forwarding (decode-and-forward, DF) communication link. In the throughput analysis of the traditional wireless communication network, the relationship between the parameters and the throughput of a certain system is analyzed, and the scheme analysis of the joint optimization of the system parameters is seldom analyzed. This paper studies the number of hop, the relationship between the SIR threshold and the throughput, and the relationship between the threshold and the throughput. The fixed hop number or SIR threshold is shown, and the throughput is a quasi concave function of another parameter. According to the structure characteristics of the throughput function, the algorithm of combining the optimization of the vector (hop, SIR threshold) is obtained for the maximum throughput of the multi hop wireless communication network.
【學位授予單位】:西南交通大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:TN929.5
【相似文獻】
相關期刊論文 前10條
1 艾五榮;移動通信網(wǎng)絡優(yōu)化市場的現(xiàn)狀與前景——專訪珠海萬禾技術有限公司總經(jīng)理郜鴻[J];移動通信;2002年09期
2 張利華;張有光;;研究生《通信網(wǎng)絡理論基礎》的研究與實踐[J];理工高教研究;2005年06期
3 孫研;移動通信網(wǎng)絡優(yōu)化的發(fā)展方向[J];電信工程技術與標準化;2005年03期
4 ;上海民航華東通信網(wǎng)絡發(fā)展有限公司[J];上海信息化;2008年08期
5 樊曉穎;;對通信網(wǎng)絡運行與維護的探討[J];計算機光盤軟件與應用;2012年04期
6 何子體;;信息社會與通信網(wǎng)絡發(fā)展分析[J];河南科技;2012年06期
7 龔才語;;通信網(wǎng)絡優(yōu)化與提升探討[J];信息通信;2013年03期
8 柴振榮;通信網(wǎng)絡用軟件的改進[J];管理科學文摘;1995年03期
9 鄭士貴;通信網(wǎng)絡的優(yōu)化利用[J];管理科學文摘;1996年06期
10 馬子麟;加拿大采用功效巨大的通信網(wǎng)絡[J];管理科學文摘;1999年12期
相關會議論文 前10條
1 馬懷東;楊秀武;;通信網(wǎng)絡發(fā)展,管理是關鍵[A];四川省通信學會2006年學術年會論文集(二)[C];2006年
2 吳少紅;;淺談通信網(wǎng)絡的發(fā)展趨勢[A];海南省通信學會學術年會論文集(2005)[C];2005年
3 周冬靜;;梧州市氣象局通信網(wǎng)絡的現(xiàn)狀及工作思考[A];2006年廣西氣象學會學術年會論文集[C];2006年
4 劉玄慶;張康定;;淺談我國鐵路通信網(wǎng)絡的今天和對今后的展望[A];四川省通信學會1999年學術年會論文集[C];1999年
5 黃淳;;國際通信網(wǎng)絡運行集中管理平臺的設計與實現(xiàn)[A];2007中國科協(xié)年會——通信與信息發(fā)展高層論壇論文集[C];2007年
6 徐蕾;陳金鷹;朱軍;;未來通信網(wǎng)絡的討論[A];四川省通信學會2012年學術年會論文集[C];2012年
7 劉龍;;通信網(wǎng)絡系統(tǒng)集成[A];OFweek寬帶通信與物聯(lián)網(wǎng)前沿技術研討會論文集[C];2013年
8 楊露菁;郝威;段立;;軍事通信網(wǎng)絡的可靠性和抗毀性研究[A];艦船電子裝備維修理論與應用——中國造船工程學會電子修理學組第四屆年會暨信息裝備保障研討會論文集[C];2005年
9 周彬;陳新安;;淺析我國移動通信網(wǎng)絡頻段的劃分及復用[A];中國通信學會通信建設工程技術委員會2010年年會論文集[C];2010年
10 梁快;隆克平;汪紀鋒;唐宏;鄺育軍;;移動通信網(wǎng)絡尋呼新思路及其策略分析[A];第九屆全國青年通信學術會議論文集[C];2004年
相關重要報紙文章 前10條
1 通文;通信網(wǎng)絡安全管理辦法三月起實施[N];通信產(chǎn)業(yè)報;2010年
2 王正;“用戶驅(qū)動”理念引領通信網(wǎng)絡變革[N];人民郵電;2001年
3 通訊員 郭運鋒 閔佑朋;鄭州通信段建成通信網(wǎng)絡“千里眼”系統(tǒng)[N];人民鐵道;2012年
4 王海燕 記者 陳巖;我省通信網(wǎng)絡質(zhì)量全國領先[N];黑龍江日報;2004年
5 記者 王山林 通訊員 趙芳 侯功華;福建電網(wǎng)試運行4G通信網(wǎng)絡[N];國家電網(wǎng)報;2013年
6 耿巖 賽迪顧問互聯(lián)網(wǎng)產(chǎn)業(yè)研究中心總經(jīng)理;“寬帶中國”激活通信網(wǎng)絡保護設備市場[N];通信產(chǎn)業(yè)報;2014年
7 劉菊花;通信網(wǎng)絡安全管理辦法將出臺[N];大眾科技報;2009年
8 上海大唐移動通信設備有限公司高級經(jīng)理 鄭哲;移動通信網(wǎng)絡優(yōu)化淺析[N];通信產(chǎn)業(yè)報;2001年
9 記者 李薇;工信部擬出臺通信網(wǎng)絡安全管理辦法[N];北京商報;2009年
10 楊志杰;通信網(wǎng)絡要分級防護[N];通信產(chǎn)業(yè)報;2009年
相關博士學位論文 前10條
1 虎大力;干擾場景下車輛移動通信網(wǎng)絡性能分析及優(yōu)化設計[D];西南交通大學;2017年
2 郝旭;ITER-PPEN電站自動化系統(tǒng)IED設備工程配置和通信網(wǎng)絡性能分析[D];中國科學技術大學;2016年
3 葉夏明;電力信息物理系統(tǒng)通信網(wǎng)絡性能分析及網(wǎng)絡安全評估[D];浙江大學;2015年
4 李全剛;通信網(wǎng)絡中用戶行為分析與生成模型研究[D];電子科技大學;2015年
5 胡雨佳;多天線選擇系統(tǒng)保密中斷概率研究[D];北京郵電大學;2015年
6 周佳;多天線雙向中繼網(wǎng)絡傳輸性能研究[D];北京郵電大學;2015年
7 張沉思;高效低復雜度的雙向放大轉(zhuǎn)發(fā)中繼傳輸技術研究[D];西安電子科技大學;2015年
8 蘇玉萍;無線中繼通信系統(tǒng)的可達速率區(qū)域及中斷性能研究[D];西安電子科技大學;2015年
9 倪藝洋;基于移動中繼的端到端傳輸技術與性能研究[D];南京郵電大學;2016年
10 何申;面向3G移動通信網(wǎng)絡的安全框架研究[D];中國科學技術大學;2007年
相關碩士學位論文 前10條
1 劉毅;某省移動公司通信網(wǎng)絡優(yōu)化項目關鍵管理問題及對策[D];山東大學;2015年
2 王永華;變電站綜合自動化系統(tǒng)的設計與工程實現(xiàn)[D];東北大學;2012年
3 況凱旋;通信網(wǎng)絡的業(yè)務規(guī)劃及保護關鍵技術研究[D];電子科技大學;2014年
4 汪巍;移動通信網(wǎng)絡質(zhì)量分析與呈現(xiàn)系統(tǒng)的研究與實現(xiàn)[D];華中科技大學;2014年
5 傅德林;智能配用電通信網(wǎng)絡業(yè)務模型研究[D];華北電力大學(北京);2016年
6 盧航;基于IPv6的電力需求側(cè)通信網(wǎng)絡架構研究[D];湖南大學;2016年
7 徐楊;通信網(wǎng)絡工程項目質(zhì)量管理研究及在NGB項目中的應用[D];上海交通大學;2015年
8 彥慶鑫;電信綜合業(yè)務自動撥測系統(tǒng)設計與實現(xiàn)[D];南昌大學;2016年
9 朱家明;多飛行器通信網(wǎng)絡的抗毀性優(yōu)化研究[D];南昌航空大學;2017年
10 張小萌;面向戰(zhàn)地通信網(wǎng)絡拓撲結構的抗毀性研究[D];湖北工業(yè)大學;2017年
,本文編號:1823020
本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/1823020.html