天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 信息工程論文 >

宮縮曲線分析及其狀態(tài)實(shí)時(shí)識(shí)別算法的研究

發(fā)布時(shí)間:2018-04-26 16:25

  本文選題:宮縮狀態(tài) + 基線估計(jì) ; 參考:《生物醫(yī)學(xué)工程學(xué)雜志》2017年05期


【摘要】:宮縮狀態(tài)實(shí)時(shí)識(shí)別在分娩鎮(zhèn)痛中具有重要意義,但相關(guān)傳統(tǒng)算法和系統(tǒng)無(wú)法滿(mǎn)足實(shí)時(shí)識(shí)別宮縮狀態(tài)的要求。針對(duì)上述情況,本文設(shè)計(jì)了一套宮縮狀態(tài)實(shí)時(shí)分析算法。該算法包括宮縮信號(hào)預(yù)處理、基于直方圖和線性迭代的宮縮基線估計(jì)以及一種基于有限狀態(tài)機(jī)原理的實(shí)時(shí)識(shí)別算法,可根據(jù)前一點(diǎn)的宮縮狀態(tài)以及一系列狀態(tài)轉(zhuǎn)換條件來(lái)識(shí)別當(dāng)前的宮縮狀態(tài),并且設(shè)置緩沖機(jī)制來(lái)避免不真實(shí)的狀態(tài)轉(zhuǎn)換。為了評(píng)估該算法的性能表現(xiàn),本文將其與現(xiàn)有的一種電子胎兒監(jiān)護(hù)儀的宮縮分析算法進(jìn)行比較。實(shí)驗(yàn)結(jié)果表明,本文算法能夠在宮縮信號(hào)實(shí)時(shí)監(jiān)測(cè)的同時(shí)對(duì)宮縮狀態(tài)進(jìn)行實(shí)時(shí)分析,算法敏感度為0.939 9,陽(yáng)性預(yù)測(cè)值為0.869 3,具有較高的準(zhǔn)確度,可達(dá)到臨床監(jiān)測(cè)的要求。
[Abstract]:The real-time recognition of uterine contractions is of great significance in labor analgesia, but the traditional algorithms and systems can not meet the requirements of real-time recognition of uterine contractions. In view of the above situation, this paper designs a set of real-time analysis algorithm of uterine contraction state. The algorithm includes preprocessing of uterine contraction signal, histogram and linear iterative baseline estimation of uterine contraction, and a real-time recognition algorithm based on the principle of finite state machine. The current state of uterine contraction can be identified according to the contractive state of the former point and a series of state transition conditions, and a buffer mechanism is set to avoid the untrue state transition. In order to evaluate the performance of the algorithm, this paper compares it with an existing algorithm for uterine contraction analysis of an electronic fetal monitor. The experimental results show that the algorithm can analyze the state of uterine contraction at the same time as the real-time monitoring of uterine contraction signal. The sensitivity of the algorithm is 0.939 9 and the positive predictive value is 0.869 3. The algorithm has a high accuracy and can meet the requirements of clinical monitoring.
【作者單位】: 暨南大學(xué)信息科學(xué)技術(shù)學(xué)院電子工程系;
【基金】:國(guó)家國(guó)際科技合作專(zhuān)項(xiàng)資助項(xiàng)目(2015DFI12970) 粵港共性技術(shù)招標(biāo)資助項(xiàng)目(2013B010136002) 廣東省科技計(jì)劃應(yīng)用型科技研發(fā)專(zhuān)項(xiàng)資助項(xiàng)目(2015B020233010) 廣東省科技計(jì)劃重點(diǎn)資助項(xiàng)目(2015B020214004)
【分類(lèi)號(hào)】:R714;TN911.7


本文編號(hào):1806773

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/1806773.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)06d7d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com