低信噪比下直擴信號盲檢測技術(shù)研究
本文選題:直擴通信系統(tǒng) + 信號檢測 ; 參考:《哈爾濱工業(yè)大學》2017年碩士論文
【摘要】:隨著信息時代的來臨,人類日常生活以及在軍事行動中對通信的依賴性越來越大。直擴通信的抗干擾性非常好,并且信息不容易被截獲到,因此在如今得到了非常廣泛的應用。在非協(xié)作通信中直擴信號的盲檢測是直擴信號參數(shù)估計和擴頻序列盲估計的基礎,因此直擴信號的盲檢測受到了很大的重視。然而以往的很多檢測算法有的是半盲檢測,有的檢測算法所需的信噪比遠高于直擴信號工作時信噪比,不能達到實際應用的要求。本文在深入研究與分析了直擴信號的基礎上,提出了兩種針對于低信噪比環(huán)境下的直擴信號盲檢測算法。首先,本文在研究分析了時域相關檢測算法的基礎上改進了基于預測的時域相關(Estimation-based Time-domain Sliding Correlating Accumulation,ETSCA)算法,該算法通過估計擴頻碼與估計數(shù)據(jù)相互更新極大的抑制了帶內(nèi)噪聲。仿真分析表明該算法對擴頻碼長為31位的直擴信號可以在信噪比為-15d B時檢測出直擴信號,并且隨著檢測使用的數(shù)據(jù)長度的增加性能會進一步提升。并且采用矢量信號源生成的直擴信號對該算法進行了驗證,結(jié)果表明該算法檢測性能良好。其次,本文在研究了特征值分解算法后提出了針對中頻信號的基于自相關的矩陣分析(Autocorrelation-based Matrix Analysis,ACMA)算法。仿真結(jié)果表明在同等條件下該算法的檢測性能要比ETSCA算法提高2d B左右。通過理論推導了直擴信號同步偏移量對ACMA算法性能的影響。該算法在同步情況下檢測性能最好,而在歸一化同步偏移量為1/2時性能最差,并且通過仿真驗證了理論推導的結(jié)果。最后,把兩種檢測算法結(jié)合起來提出了基于估計的自相關矩陣分析算法(Estimation-based Autocorrelation Matrix Analysis,EACMA)。該算法解決了ACMA算法檢測性能隨著同步偏移量的變化而波動的缺點,提升了算法的檢測性能。該算法良好的性能是在提高了算法復雜度的基礎上實現(xiàn)的,針對該算法的高復雜度本文還提出了該算法的步進快速搜索方案,該方案可以在犧牲很小檢測性能的情況下使檢測時間縮小到原有檢測時間的幾分之一,步長與復雜度成線性關系,當步長增加時,檢測所需要的時間降低,但檢測性能下降。
[Abstract]:With the advent of the information age, people depend more and more on communication in their daily life and military operations. Direct-spread-sequence communication (DSSS) is widely used because of its good anti-interference and the information is not easily intercepted. Blind detection of DSSS signals in non-cooperative communication is the basis of parameter estimation and blind estimation of spread spectrum sequences, so blind detection of DSSS signals is paid great attention to. However, some of the previous detection algorithms are semi-blind, and some of them require a higher SNR than the DSSS signal to noise ratio (SNR), which can not meet the requirements of practical applications. On the basis of deep research and analysis of DSSS signals, two blind detection algorithms for DSSS signals in low SNR environment are proposed in this paper. Firstly, based on the analysis of the time-domain correlation detection algorithm, this paper improves the prediction-based Time-domain Sliding Correlating acceptance algorithm, which greatly reduces the in-band noise by updating the spread spectrum code and the estimated data. The simulation results show that the proposed algorithm can detect the DSSS signal when the SNR is -15dB for the 31-bit DSSS signal, and the performance will be further improved with the increase of the data length used in the detection. The DSSS signal generated by the vector signal source is used to verify the algorithm, and the results show that the algorithm has good detection performance. Secondly, after studying the eigenvalue decomposition algorithm, an autocorrelation-based Matrix analysis algorithm for intermediate frequency signals is proposed. Simulation results show that the detection performance of this algorithm is about 2 dB higher than that of ETSCA algorithm under the same conditions. The influence of synchronous offset of DSSS signal on the performance of ACMA algorithm is deduced theoretically. The performance of the algorithm is the best in the case of synchronization, but the worst when the normalized synchronization offset is 1 / 2, and the theoretical results are verified by simulation. Finally, an estimation based Autocorrelation Matrix analysis algorithm based on estimation is proposed by combining the two detection algorithms. The algorithm solves the shortcoming that the detection performance of ACMA algorithm fluctuates with the change of synchronous offset, and improves the detection performance of the algorithm. The good performance of the algorithm is realized on the basis of increasing the complexity of the algorithm. In view of the high complexity of the algorithm, this paper also proposes a step by step fast search scheme for the algorithm. The proposed scheme can reduce the detection time to a fraction of the original detection time at the expense of very small detection performance. The step size is linearly related to the complexity. When the step size increases, the detection time will decrease, but the detection performance will decline.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN914.42
【參考文獻】
相關期刊論文 前10條
1 GUAN Mingxiang;WANG Le;;A Novel Recognition Method for Low SNR DSSS Signals Based on Four-Order Cumulant and Eigenvalue Analysis[J];Chinese Journal of Electronics;2015年03期
2 沈斌;王建新;;基于奇異值分解的直擴信號偽碼序列及信息序列盲估計方法[J];電子與信息學報;2014年09期
3 馬超;張立民;劉凱;;基于碼片延遲的多徑信道擴頻序列盲估計[J];電子設計工程;2014年10期
4 沙志超;吳海斌;任嘯天;黃知濤;周一宇;;非合作直擴信號檢測中的相關函數(shù)二階矩方法[J];系統(tǒng)工程與電子技術(shù);2013年08期
5 王曉燕;方世良;朱志峰;;一種基于自相關估計的水聲直擴信號檢測方法[J];東南大學學報(自然科學版);2010年02期
6 董占奇;胡捍英;于宏毅;;基于延遲相乘-相關及譜分析的直擴信號檢測與符號周期、碼片時寬估計分析[J];電子與信息學報;2008年04期
7 張?zhí)祢U;周正中;鄺育軍;田增山;;低信噪比長偽碼直擴信號偽碼周期的估計方法[J];系統(tǒng)工程與電子技術(shù);2007年01期
8 韓高莉;田紅心;;基于高階累積量的低信噪比直擴信號盲檢測的實現(xiàn)[J];空間電子技術(shù);2006年02期
9 張?zhí)祢U,周正中,郭宗祥;一種DS/SS信號PN碼序列估計的神經(jīng)網(wǎng)絡方法[J];信號處理;2001年06期
10 張建立;直擴信號的檢測[J];無線電工程;1994年02期
相關博士學位論文 前3條
1 任嘯天;直擴信號擴頻序列盲估計研究[D];國防科學技術(shù)大學;2013年
2 趙知勁;統(tǒng)計通信信號處理技術(shù)研究[D];西安電子科技大學;2009年
3 閆統(tǒng)江;偽隨機序列的構(gòu)造及其性質(zhì)研究[D];西安電子科技大學;2007年
相關碩士學位論文 前6條
1 王碧雯;低截獲直擴信號檢測方法研究[D];電子科技大學;2016年
2 許彬;非協(xié)作信號的參數(shù)及PN序列的盲估計[D];哈爾濱工業(yè)大學;2015年
3 李洪源;直擴信號擴頻碼序列盲估計算法研究[D];哈爾濱工程大學;2012年
4 趙曉艷;直接序列擴頻信號的盲檢測和參數(shù)估計方法[D];北京郵電大學;2008年
5 陳楚楚;非協(xié)作情況下直接擴頻信號擴頻碼盲估計研究[D];浙江大學;2006年
6 孔祥苓;直接序列擴頻信號的檢測及參數(shù)估計技術(shù)研究[D];電子科技大學;2005年
,本文編號:1780070
本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/1780070.html