時頻域分形維數(shù)分析的光譜信號重疊峰解析算法
本文選題:分形 切入點:小波 出處:《光譜學與光譜分析》2017年12期
【摘要】:由于光譜譜線存在自然展寬、多普勒展寬、碰撞展寬等,使混合氣體中多種成分的吸收光譜信號出現(xiàn)相鄰譜峰重疊現(xiàn)象,給混合氣體組成成分的定性或定量檢測帶來較大的困難。現(xiàn)有的方法在獲取先驗知識、處理精度、運算效率等方面存在不足。提出基于時頻域分形維數(shù)分析的光譜信號重疊峰解析算法,結合小波的多尺度觀測能力和分形的自相似度的度量能力,識別、定位和解析光譜信號中的重疊峰。首先利用小波對具有重疊譜峰的光譜信號進行光譜頻率域和尺度域的分析,然后對該時頻域的光譜信號在同一光譜頻率下的多尺度數(shù)據(jù)進行自相似性度量和分形計算。逐頻率計算后得到光譜信號在頻率域的分形維數(shù)曲線。該曲線體現(xiàn)了光譜信號在不同尺度的自相似性,其極值位置與光譜信號的各獨立峰的位置具有相關性。依據(jù)此特性,結合分形曲線的特征參數(shù),最后利用神經(jīng)網(wǎng)絡解析出對應混合氣體成分的混疊在一起的各個獨立譜峰。該方法利用小波的多分辨率特性,對信號進行不同尺度的精細度量。分形模型則提高了系統(tǒng)解析復雜信號的能力,對重疊程度高的多譜峰重疊信號也有很強的處理能力。借助人工神經(jīng)網(wǎng)絡,實現(xiàn)了整個算法的自動測量。通過實驗結果分析,驗證了算法的有效性,并討論影響算法效果的主要因素。
[Abstract]:Due to the natural broadening of spectral lines, Doppler broadening, collision broadening and so on, the absorption spectrum signals of various components in the mixed gases overlap with each other. It brings great difficulties to the qualitative or quantitative detection of the composition of mixed gases. The existing methods are used to obtain prior knowledge and deal with the accuracy. The algorithm based on fractal dimension analysis in time-frequency domain is proposed to analyze the overlapped peaks of spectral signals, which combines the multi-scale observation ability of wavelet and the measurement ability of fractal self-similarity. The overlapping peaks in the spectral signals are located and analyzed. Firstly, the spectral signals with overlapping spectral peaks are analyzed in the spectral frequency domain and the scale domain by wavelet transform. Then self-similarity measurement and fractal calculation of the multi-scale data of the spectral signal in the same spectral frequency are carried out. The fractal dimension curve of the spectral signal in the frequency domain is obtained by frequency calculation. The self-similarity of spectral signals at different scales, The position of the extreme value is correlated with the position of each independent peak of the spectral signal. According to this characteristic, the characteristic parameters of the fractal curve are combined. Finally, the neural network is used to analyze the independent spectral peaks corresponding to the mixed gas components. The method utilizes the multi-resolution characteristic of wavelet. The fractal model improves the system's ability to analyze complex signals, and it also has a strong ability to deal with multi-spectral peaks overlapping signals with high overlap degree. Through the analysis of experimental results, the validity of the algorithm is verified, and the main factors affecting the effect of the algorithm are discussed.
【作者單位】: 武漢大學電子信息學院;電網(wǎng)環(huán)境保護國家重點實驗室中國電力科學研究院;
【基金】:國家科技支撐計劃課題(2011BAF02B02)資助
【分類號】:TN911.74
【相似文獻】
相關期刊論文 前10條
1 陳建安;分形維數(shù)的定義及測定方法[J];電子科技;1999年04期
2 鄭會永,劉華強,戴冠中;基于短時分形維數(shù)的信號濾波方法[J];信號處理;1998年01期
3 薛東輝,朱耀庭,朱光喜;分形維數(shù)的多尺度形態(tài)估計與目標提取[J];信號處理;1998年01期
4 薛東輝,,朱耀庭,朱光喜,熊艷;有限樣本條件下分形維數(shù)的估計[J];系統(tǒng)工程與電子技術;1996年12期
5 陳向東,常文森,高政;基于數(shù)學形態(tài)學的圖像分形維數(shù)實時提取方法研究[J];信息與控制;1998年06期
6 閆佩君;錢聰;;基于分形維數(shù)的語音信息隱藏方法[J];現(xiàn)代電子技術;2006年23期
7 王潤亮;黃焱;丁金忠;張永超;;基于分形維數(shù)的動態(tài)合作感知[J];計算機工程;2012年14期
8 吳更石,梁德群,田原;基于分形維數(shù)的紋理圖像分割[J];計算機學報;1999年10期
9 陳力,謝玉瓊;一種基于分形維數(shù)的自適應語音信息隱藏算法[J];武漢大學學報(理學版);2003年03期
10 付萍,朱艷秋,李江,張崇巖;一種基于分形維數(shù)聚類的分形圖像編碼方法[J];光學技術;2000年02期
相關會議論文 前2條
1 閆佩君;陳亮;;基于小波高頻分形維數(shù)的語音隱藏方法[A];第一屆建立和諧人機環(huán)境聯(lián)合學術會議(HHME2005)論文集[C];2005年
2 李萬社;保錚;;信號的分形特征估計:理論與實現(xiàn)[A];信息科學與微電子技術:中國科協(xié)第三屆青年學術年會論文集[C];1998年
相關碩士學位論文 前2條
1 王小俠;基于分形維數(shù)和小波的圖像編碼[D];西安理工大學;2006年
2 楊悅城;基于LabVIEW的便攜式光譜信號采集與處理系統(tǒng)[D];福建師范大學;2012年
本文編號:1698667
本文鏈接:http://www.sikaile.net/kejilunwen/xinxigongchenglunwen/1698667.html