氧化物磁性材料Cu 3 (CO 3 ) 2 (OH) 2 和SrEr 2 O 4 的低溫熱傳導
發(fā)布時間:2022-01-03 21:57
在自然界中,氧化物是一種十分普遍存在的化合物。而相應的由磁性氧化物組成的功能性材料也被人們大量的應用到生產(chǎn)和生活中。在氧化物組成的磁性材料中,由于存在晶格、電荷、自旋和軌道等多種自由度之間的相互作用,能夠產(chǎn)生許多新奇的物理行為。這些氧化物磁性材料不僅為例如龐磁阻材料、多鐵性材料、磁熱開關(guān)材料等基礎(chǔ)科學研究領(lǐng)域中開拓了廣闊空間,在信息儲存、能量轉(zhuǎn)換、電子傳感等日常生活中的各個領(lǐng)域也得到了廣泛的實際應用。隨著科技的日新月異和應用技術(shù)的不斷發(fā)展,這些由氧化物構(gòu)成的磁性材料更能得到蓬勃的發(fā)展。近年來,人們發(fā)現(xiàn)在氧化物磁性材料中,熱輸運行為能表現(xiàn)出很奇特的性質(zhì)。在這些材料中,與磁性相關(guān)的元激發(fā)可以參與傳導熱量或者散射聲子,與聲子存在非常強的耦合作用。因而,研究這類材料的熱輸運行為,有助于更深刻的理解在典型氧化物磁性材料中磁激發(fā)以及其磁基態(tài)行為等。在本論文,我們針對準一維量子磁體Cu3(C03)2(OH)2、多層鈣鈦礦材料GdBaMn205.0、具有zigzag自旋鏈的阻挫磁性材料SrEr204等幾種氧化物磁性材料熱導率進行了熱輸運性質(zhì)的測量與研究,論文共分為四章,每章主要內(nèi)容概括如下:第一章綜述...
【文章來源】:中國科學技術(shù)大學安徽省 211工程院校 985工程院校
【文章頁數(shù)】:105 頁
【學位級別】:博士
【部分圖文】:
圖1.1磁場沿Z方向,5=?1/2的ZYZHeisenberg自旋鏈的相圖[11]
//?=?Xj(^,+^,?+?zLS;^1)?0.2)??其中,?/為鏈內(nèi)最近鄰交換相互作用,A表示各向異性大小。如圖1.丨所示為S??=?1/2的^ZHeisenberg自旋鏈的相圖。具體來說,它可以分為以下幾種情況:??1)
圖1.3不同相互作用所形成的相圖。橫坐標:次近鄰相互作用與近鄰相互作用的比值。縱坐??標:鏈間相互作用與最近鄰相互作用比值[26]。??圖1.3是考慮最近鄰和次近鄰交換相互作用的1/2?Heisenberg?ZYZ反鐵??磁鏈的相圖。依次為N6el相,自旋二聚體態(tài)相和上上下下形式排列的雙N6el??相。??另一種在JrJ2自旋鏈模型上可能出現(xiàn)的阻挫類型的是,最近鄰4是鐵磁??交換作用(,<〇),而次近鄰的J2是反鐵磁作用,這樣的自旋鏈也被稱為F-AF??自旋鏈。Hamada等[27]研宄后發(fā)現(xiàn),當會出現(xiàn)一個新??的臨界點。當Ji<-4J2時,這個體系的基態(tài)就是完全的鐵磁態(tài)。而當??時,體系的基態(tài)比較復雜。S.R.?White和Affleck等[28]認為體系的基態(tài)是無能??隙自旋單態(tài),而Itoi和Qin等[29]通過更精確的數(shù)值計算認為對于較小的Ji,??基態(tài)存在
本文編號:3567050
【文章來源】:中國科學技術(shù)大學安徽省 211工程院校 985工程院校
【文章頁數(shù)】:105 頁
【學位級別】:博士
【部分圖文】:
圖1.1磁場沿Z方向,5=?1/2的ZYZHeisenberg自旋鏈的相圖[11]
//?=?Xj(^,+^,?+?zLS;^1)?0.2)??其中,?/為鏈內(nèi)最近鄰交換相互作用,A表示各向異性大小。如圖1.丨所示為S??=?1/2的^ZHeisenberg自旋鏈的相圖。具體來說,它可以分為以下幾種情況:??1)
圖1.3不同相互作用所形成的相圖。橫坐標:次近鄰相互作用與近鄰相互作用的比值。縱坐??標:鏈間相互作用與最近鄰相互作用比值[26]。??圖1.3是考慮最近鄰和次近鄰交換相互作用的1/2?Heisenberg?ZYZ反鐵??磁鏈的相圖。依次為N6el相,自旋二聚體態(tài)相和上上下下形式排列的雙N6el??相。??另一種在JrJ2自旋鏈模型上可能出現(xiàn)的阻挫類型的是,最近鄰4是鐵磁??交換作用(,<〇),而次近鄰的J2是反鐵磁作用,這樣的自旋鏈也被稱為F-AF??自旋鏈。Hamada等[27]研宄后發(fā)現(xiàn),當會出現(xiàn)一個新??的臨界點。當Ji<-4J2時,這個體系的基態(tài)就是完全的鐵磁態(tài)。而當??時,體系的基態(tài)比較復雜。S.R.?White和Affleck等[28]認為體系的基態(tài)是無能??隙自旋單態(tài),而Itoi和Qin等[29]通過更精確的數(shù)值計算認為對于較小的Ji,??基態(tài)存在
本文編號:3567050
本文鏈接:http://www.sikaile.net/kejilunwen/wulilw/3567050.html
最近更新
教材專著