天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

復(fù)雜環(huán)境下雷達(dá)信號的分選方法

發(fā)布時間:2019-06-02 14:11
【摘要】:雷達(dá)信號分選指從多部雷達(dá)發(fā)射的混疊信號中將各個雷達(dá)發(fā)出的信號歸類的過程。在當(dāng)前電子對抗戰(zhàn)爭中,及時準(zhǔn)確地偵察敵方信號,捕獲敵方信息是取得勝利的關(guān)鍵,而信號分選是電子偵察系統(tǒng)的關(guān)鍵技術(shù)。因此,在當(dāng)前電子環(huán)境復(fù)雜,信號交疊嚴(yán)重,雷達(dá)輻射源未知的條件下,如何有效地將雷達(dá)信號分選出來是亟待解決的問題。為此,本文首先對k均值聚類算法和模糊聚類算法進(jìn)行深入研究:k均值聚類算法是對雷達(dá)樣本進(jìn)行的硬劃分,聚類準(zhǔn)確率不高,模糊聚類則需要事先設(shè)定先驗(yàn)信息,對未知雷達(dá)輻射源信號不能有效聚類,針對傳統(tǒng)聚類算法存在的不足,首先從雷達(dá)信號的脈間特征著手,利用傳統(tǒng)五參數(shù),提出一種基于入侵性雜草改進(jìn)的FCM算法,然后研究雷達(dá)信號的脈內(nèi)特征的提取方法,提出一種基于時頻原子提取脈內(nèi)特征的方法。主要研究內(nèi)容和取得的成果如下:針對雷達(dá)信號脈間特征的聚類,入侵性雜草算法具有結(jié)構(gòu)簡單,參數(shù)少,全局搜索能力強(qiáng)的特點(diǎn),能夠在較少的迭代次數(shù)下搜尋最優(yōu)解,為此,本文提出一種基于雜草改進(jìn)的FCM算法,該算法主要是對模糊聚類算法對初始聚類中心的依賴性進(jìn)行改進(jìn),首先根據(jù)樣本數(shù)目確定雷達(dá)類別數(shù)目的解空間,然后根據(jù)距離準(zhǔn)則,采用雜草算法在整個解空間內(nèi)搜索最佳的類別數(shù)目,作為模糊聚類的初始參數(shù)進(jìn)行聚類,并跟傳統(tǒng)的k均值聚類和AP聚類算法進(jìn)行比較,驗(yàn)證了該算法擺脫了對初始聚類中心的依賴性,具有較高的分選正確率。針對雷達(dá)信號脈內(nèi)特征的聚類,使用雷達(dá)信號的脈內(nèi)特征來研究信號的分選問題是近幾年討論的熱點(diǎn),許多學(xué)者驗(yàn)證了基于時頻原子提取脈內(nèi)特征是有效的,但是時頻原子的數(shù)量巨大,計算復(fù)雜度高,針對這一問題本文提出一種改進(jìn)的時頻原子提取脈內(nèi)特征的方法,首先介紹5種經(jīng)典的雷達(dá)信號的數(shù)學(xué)模型,然后提出將雜草算法與時頻原子相結(jié)合的方法,根據(jù)距離準(zhǔn)則,利用雜草智能算法搜尋能夠區(qū)分不同調(diào)制方式的雷達(dá)信號的一組原子,并與待分選的雷達(dá)信號做內(nèi)積運(yùn)算,作為改進(jìn)FCM算法的輸入矢量進(jìn)行分類,分別在-3dB到5dB的信噪比下進(jìn)行仿真實(shí)驗(yàn),驗(yàn)證該算法的有效性。
[Abstract]:Radar signal sorting refers to the process of classifying the signals emitted by each radar from mixed signals transmitted by multiple radars. In the current electronic confrontation war, timely and accurate detection of enemy signals and acquisition of enemy information is the key to victory, and signal sorting is the key technology of electronic reconnaissance system. Therefore, under the condition that the current electronic environment is complex, the signal overlap is serious, and the radar radiation source is unknown, how to effectively sort out the radar signal is an urgent problem to be solved. Therefore, in this paper, the k-means clustering algorithm and fuzzy clustering algorithm are deeply studied: K-means clustering algorithm is a hard division of radar samples, the clustering accuracy is not high, fuzzy clustering needs to set prior information in advance. The unknown radar emitter signal can not be effectively clustering. Aiming at the shortcomings of the traditional clustering algorithm, an improved FCM algorithm based on invasive weeds is proposed by using the traditional five parameters, starting from the inter-pulse characteristics of radar signals. Then the method of extracting intra-pulse features of radar signals is studied, and a method of extracting intra-pulse features based on time-frequency atoms is proposed. The main research contents and achievements are as follows: according to the clustering of radar signal inter-pulse characteristics, the invasive weed algorithm has the characteristics of simple structure, less parameters and strong global search ability, and can search for the optimal solution under less iterations. In this paper, an improved FCM algorithm based on weeds is proposed, which mainly improves the dependence of fuzzy clustering algorithm on the initial clustering center. Firstly, the solution space of radar category number is determined according to the number of samples. Then, according to the distance criterion, the weed algorithm is used to search for the best number of categories in the whole solution space, which is used as the initial parameter of fuzzy clustering, and compared with the traditional k-means clustering and AP clustering algorithm. It is verified that the algorithm gets rid of the dependence on the initial clustering center and has a high sorting accuracy. Aiming at the clustering of intra-pulse features of radar signals, it is a hot topic to study the sorting of radar signals by using the in-pulse features of radar signals in recent years. Many scholars have verified that it is effective to extract intra-pulse features based on time-frequency atoms. However, the number of time-frequency atoms is huge and the computational complexity is high. In order to solve this problem, an improved method of extracting intra-pulse features by time-frequency atoms is proposed in this paper. Firstly, five classical mathematical models of radar signals are introduced. Then, a method of combining weed algorithm with time-frequency atom is proposed. According to the range criterion, the weed intelligent algorithm is used to search for a group of atoms that can distinguish different modulation radar signals, and the internal product operation is performed with the radar signal to be sorted. As the input vector of the improved FCM algorithm, the simulation experiments are carried out under the signal-to-noise ratio (SNR) of-3dB to 5dB to verify the effectiveness of the algorithm.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN957.51

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 向嫻;湯建龍;;一種基于網(wǎng)格密度聚類的雷達(dá)信號分選[J];火控雷達(dá)技術(shù);2010年04期

2 孫鑫;侯慧群;楊承志;;基于改進(jìn)K-均值算法的未知雷達(dá)信號分選[J];現(xiàn)代電子技術(shù);2010年17期

3 劉旭波;司錫才;;基于改進(jìn)的模糊聚類的雷達(dá)信號分選[J];彈箭與制導(dǎo)學(xué)報;2009年05期

4 劉彈;徐光華;梁霖;羅愛玲;;基于鄰接區(qū)域交疊概率的特征選擇方法[J];機(jī)械工程學(xué)報;2009年02期

5 蘇守寶;方杰;汪繼文;王本有;;基于入侵性雜草克隆的圖像聚類方法[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2008年05期

6 朱明;金煒東;普運(yùn)偉;胡來招;;基于Chirplet原子的雷達(dá)輻射源信號特征提取[J];紅外與毫米波學(xué)報;2007年04期

7 李楊寰;初翠強(qiáng);徐暉;周一宇;;一種新的脈沖重復(fù)頻率估計方法[J];電子信息對抗技術(shù);2007年02期

8 安振;李運(yùn)禎;;PRI變換對脈沖雷達(dá)信號PRI檢測的性能分析[J];現(xiàn)代雷達(dá);2007年02期

9 姜勤波;馬紅光;楊利鋒;;脈沖重復(fù)間隔估計與去交織的方正弦波插值算法[J];電子與信息學(xué)報;2007年02期

10 陳國海;;基于脈沖序列間隔變換的重復(fù)周期分選方法[J];雷達(dá)與對抗;2006年01期

相關(guān)博士學(xué)位論文 前3條

1 國強(qiáng);復(fù)雜環(huán)境下未知雷達(dá)輻射源信號分選的理論研究[D];哈爾濱工程大學(xué);2007年

2 張國柱;雷達(dá)輻射源識別技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2005年

3 徐欣;雷達(dá)截獲系統(tǒng)實(shí)時脈沖列去交錯技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2001年

相關(guān)碩士學(xué)位論文 前6條

1 楊多;復(fù)雜環(huán)境下多參數(shù)雷達(dá)信號分選算法研究[D];哈爾濱工程大學(xué);2012年

2 王亮;基于時頻原子的雷達(dá)輻射源信號特征分析[D];西南交通大學(xué);2009年

3 馬曉東;雷達(dá)信號分選算法研究及硬件設(shè)計實(shí)現(xiàn)[D];哈爾濱工程大學(xué);2008年

4 何煒;雷達(dá)信號分選關(guān)鍵算法研究[D];電子科技大學(xué);2007年

5 鄒順;雷達(dá)信號分選與細(xì)微特征分析[D];西北工業(yè)大學(xué);2006年

6 劉東霞;脈內(nèi)調(diào)制信號的分析與自動識別[D];西安電子科技大學(xué);2003年



本文編號:2491162

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/wltx/2491162.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5af6b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com