硅線波導中非線性光控光特性研究
[Abstract]:Compared with the traditional discrete optoelectronic optical processing technology, the photonic integrated chip reduces the cost and complexity of the network. As a new type of silicon-based optoelectronic material,. SOI (Silicon-on-insulator is considered to be the most promising technology to meet the needs of future communication network development. It is fully compatible with the existing silicon-based VLSI technology. Therefore, it has become the focus of the study of silicon photonics. Silicon wire waveguide is one of the important components of photonic integrated chip. Its submicron structure has a strong limiting ability to the light field and can realize the nonlinear photon information processing function. In this paper, based on the national 973 project "Ultra-fast nonlinear Optical Control Mechanism and All-optical 2R/3R Regeneration Integrated Chip", the theoretical study of four-wave mixing effect in silicon waveguide is carried out. The main work is as follows: 1. The fourth order Runge-Kutta method is used to calculate the four wave mixing coupling mode equation of guided wave in silicon wire waveguide. The dispersion characteristics and optical absorption loss (linear transmission loss, two photon absorption) of silicon wire waveguide structure under single mode propagation are analyzed. The influence of carrier absorption on the optical power of degenerate four-wave mixing is related to the linear and nonlinear terms of the total phase mismatch factor, respectively. The calculation results show that increasing the width or decreasing the height of the silicon wire waveguide will cause the dispersion curve to move downwards, and for the silicon wire waveguide with high transmission loss, increasing the pump power or decreasing the waveguide length will help to obtain the optimized output idling frequency optical power. The effects of two-photon absorption and free carrier absorption will lead to the attenuation of pump power, thus changing the nonlinear phase mismatch factor and the four-wave mixing efficiency. Considering the above factors, the width and height of silicon wire waveguide are chosen to be 500 nm and 250 nm, respectively, and the simulation results are verified by FDTD method. The mode distribution and dispersion curve are in agreement with the numerical results. 2. The characteristics of the power transfer function (PTF) of the data pumped four-wave mixing in a rectangular silicon-wire waveguide are calculated, and its saturation point, sign-passing (Mark) threshold point and space-sign (Space) threshold point are analyzed. The calculation results show that for the case of the parameter obtained in this paper, the linear transmission loss of 1. 2 ~ 2 ~ 2. 0 cm, auxiliary optical wave length of 1 500 ~ 1 580 nm, is 0.5 ~ 4 dB/cm. The 2R regenerator based on silicon-wire waveguide structure can provide an extinction ratio of about 4.5 dB, in which the effective carrier lifetime should be more than 2.5 ns.3.. The phase sensitivity characteristics of non degenerate four wave mixing parametric amplification process in silicon wire waveguide are studied. According to the input-output phase transfer curve, the parameters which can quantitatively evaluate the phase compression performance are defined, including the input-output phase jitter tolerance and phase compression efficiency, which can be used to analyze the compression performance of multiple phase states, such as signal transmission and null number. The effects of pump power, signal optical to idler power ratio, signal optical wavelength, waveguide length and loss on the phase compression performance are discussed. The results show that when the pump power is 700 mw, the optimal phase regeneration effect can be obtained when the ratio of optical to idling power is 6 dB, which can provide theoretical guidance for the related experimental research in the next step.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN814
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 鄧曉清,楊沁清,王紅杰,胡雄偉,王啟明;硅基二氧化硅波導的雙折射效應補償理論分析[J];半導體學報;2002年12期
2 任武,高本慶,楊仕明;波導寬邊輻射縫隙的全波分析[J];現(xiàn)代雷達;2004年02期
3 曹微微;呂國強;楊軍;范立善;;毫米波波導設計分析[J];現(xiàn)代電子技術(shù);2008年03期
4 陳抱雪,袁一方,磯守;寬帶消波長依存波導耦合器的統(tǒng)計優(yōu)化設計[J];光學學報;2001年08期
5 王志勇;戴基智;;新型寬角度、低損耗三分支波導結(jié)構(gòu)及其數(shù)值模擬分析[J];激光雜志;2007年03期
6 殷瑞劍;劉濮鯤;肖劉;;損耗介質(zhì)周期加載圓柱波導場分析[J];微波學報;2008年S1期
7 張禮朝;梁斌明;莊松林;;光子晶體平行波導耦合效應研究及應用[J];光電工程;2011年07期
8 趙芳燦;;毫米波低損耗波導的發(fā)展趨勢[J];光纖與電纜及其應用技術(shù);1991年01期
9 祖繼鋒;聚合物波導在光互連中的應用[J];高技術(shù)通訊;1995年03期
10 方靜,,肖衍明,尹文言;矩形手征波導中混合模的邊元有限元分析法和傳輸特性研究[J];電子學報;1996年03期
中國重要會議論文全文數(shù)據(jù)庫 前10條
1 梁華偉;阮雙琛;張敏;蘇紅;權(quán)潤愛;史學舜;;彎曲波導耦合理論研究[A];第九屆全國光電技術(shù)學術(shù)交流會論文集(上冊)[C];2010年
2 張玲芬;;左手介質(zhì)圓柱形波導的模式特性分析[A];2009年全國天線年會論文集(上)[C];2009年
3 趙柳;劉慶想;李相強;李軍;;徑向波導模式分析[A];四川省電子學會高能電子學專業(yè)委員會第四屆學術(shù)交流會論文集[C];2005年
4 曹斌照;許福永;;傅立葉展開-差分法分析H波導[A];2007年全國微波毫米波會議論文集(上冊)[C];2007年
5 龐拂飛;韓秀友;蔡海文;瞿榮輝;方祖捷;;溶膠-凝膠波導環(huán)形諧振腔的實驗研究[A];全國第十二次光纖通信暨第十三屆集成光學學術(shù)會議論文集[C];2005年
6 樊德森;;波導結(jié)和波導-喇叭輻射器分析導波數(shù)值邊界條件及其應用[A];1991年全國微波會議論文集(卷Ⅱ)[C];1991年
7 吳自浩;顧平;;大型組合變換波導加工工藝探析[A];中國電子學會生產(chǎn)技術(shù)學分會機械加工專業(yè)委員會第七屆學術(shù)年會論文集[C];1998年
8 張新定;賴冬梅;翁寶龍;;波導結(jié)構(gòu)中的幾何光傳輸(英文)[A];第十五屆全國量子光學學術(shù)報告會報告摘要集[C];2012年
9 許雄;魏彥玉;沈飛;殷海榮;劉洋;黃民智;徐進;王戰(zhàn)亮;宮玉彬;王文祥;;正弦波導的電磁特性及其在太赫茲波段的應用[A];2011年全國微波毫米波會議論文集(下冊)[C];2011年
10 陳敘;李錫華;趙龍;李霞;王明華;;電場輔助擴散對玻璃離子交換波導的影響[A];大珩先生九十華誕文集暨中國光學學會2004年學術(shù)大會論文集[C];2004年
中國碩士學位論文全文數(shù)據(jù)庫 前10條
1 陳穎;基于復合左右手波導的非等間距諧振波導隙縫陣的研究[D];電子科技大學;2011年
2 李麗絲;高速鐵路環(huán)境下矩形漏波導輻射特性的研究[D];北京交通大學;2012年
3 高逸暉;殷鋼波導變形分析及控制[D];西安電子科技大學;2007年
4 劉科檢;深亞波長金屬—介電復合波導結(jié)構(gòu)的模式分析和傳輸線理論研究[D];哈爾濱工業(yè)大學;2013年
5 鄢良才;電磁波在波導中的異常傳播研究[D];電子科技大學;2002年
6 趙鵬程;倒脊型有源波導研究[D];吉林大學;2008年
7 趙玲玲;改進對稱波導結(jié)構(gòu)的表面等離子激元傳輸特性研究[D];燕山大學;2015年
8 馮耀軍;雙面金屬包覆波導的應用研究[D];上海交通大學;2007年
9 文學金;波導模式基本理論及其應用[D];浙江大學;2004年
10 戴一鳴;K波段波導縫隙天線陣列的設計[D];安徽大學;2015年
本文編號:2378566
本文鏈接:http://www.sikaile.net/kejilunwen/wltx/2378566.html