基于壓縮感知的雷達(dá)信號(hào)處理應(yīng)用研究
[Abstract]:At present, various radar systems such as phased array radar, wideband / ultra-wideband radar, synthetic aperture radar and inverse synthetic aperture radar all use digital processing technology to extract target parameter information from echo. Compression sensing theory can acquire discrete data at a sampling rate much lower than that of Nyquist (Nyquist) theory, and then reconstruct signals by nonlinear reconstruction algorithm, which is a revolutionary breakthrough in the field of signal processing. In this paper, the application of compressed sensing in radar signal processing is studied, and some problems existing in radar signal processing are solved. The main contents are as follows: (1) the tracking data rate of remote radar and multi-target tracking phased array radar is low, and the estimation of Doppler frequency is fuzzy. In this paper, a new method of random sparse pulse Doppler ambiguity based on compressed sensing is proposed. The radar system only needs to transmit sparse detection pulse randomly. By designing the corresponding sensing matrix and using the compression perception reconstruction algorithm to reconstruct the signal, the Doppler frequency value is obtained without ambiguity. It is concluded that the emission time of the random sparse pulse is not completely random in application, and the effect of the number of observations and the non-fuzzy distance should be taken into account. Simulation results show that this method can solve the Doppler ambiguity problem of remote radar and save the time resource of phased array radar greatly. (2) the application of wideband radar signals requires high speed analog to digital converters, resulting in a sharp increase in radar data. In this paper, the method of combining azimuth sparse pulse and range compression sampling of wideband inverse synthetic aperture radar imaging signal is used to save radar time resource and reduce signal sampling rate and storage transmission cost. The original signal is reconstructed by compression perception reconstruction algorithm, and then the reconstructed image is predicted in the range and azimuth directions respectively, and the super-resolution radar image is obtained. (3) low target tracking data rate also brings great difficulty to micro Doppler measurement of remote radar. In this paper, the problem of micro-Doppler extraction under low pulse repetition rate is studied, and a low PRF micro-Doppler extraction method based on compression sensing is proposed. This method only needs to fine-tune the time resource scheduling of radar and obtain the fretting characteristic curve of radar by transmitting a random detection pulse train and then reconstructing the echo by compressed sensing signal and time-frequency analysis. Simulation results show that compression sensing is feasible for feature extraction of micro Doppler.
【學(xué)位授予單位】:廈門大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN957.51
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉濤;龔耀寰;;參差重復(fù)頻率分析和設(shè)計(jì)[J];電子科技大學(xué)學(xué)報(bào);2009年02期
2 朱兆達(dá),葉蓁如,鄔小青;一種超分辨距離多普勒成象方法[J];電子學(xué)報(bào);1992年07期
3 石光明;劉丹華;高大化;劉哲;林杰;王良君;;壓縮感知理論及其研究進(jìn)展[J];電子學(xué)報(bào);2009年05期
4 劉天鵬;劉振;魏璽章;;基于壓縮感知的脈間捷變頻SAR成像研究[J];電子學(xué)報(bào);2012年06期
5 王琦;周峰;邢孟道;黃金杰;保錚;;雷達(dá)成像中稀疏孔徑外推新算法[J];電子與信息學(xué)報(bào);2007年11期
6 李金梁;王雪松;劉陽;劉進(jìn);孟剛;王濤;;雷達(dá)目標(biāo)旋轉(zhuǎn)部件的微Doppler效應(yīng)[J];電子與信息學(xué)報(bào);2009年03期
7 張玉璽;孫進(jìn)平;張冰塵;洪文;;基于壓縮感知理論的多普勒解模糊處理[J];電子與信息學(xué)報(bào);2011年09期
8 徐建平;皮亦鳴;;壓縮感知SAR成像中的運(yùn)動(dòng)補(bǔ)償[J];電子與信息學(xué)報(bào);2012年02期
9 高磊;宿紹瑩;陳曾平;;寬帶雷達(dá)Chirp回波的正交稀疏表示及其在壓縮感知中的應(yīng)用[J];電子與信息學(xué)報(bào);2011年11期
10 陳行勇;劉永祥;黎湘;郭桂蓉;;微多普勒分析和參數(shù)估計(jì)[J];紅外與毫米波學(xué)報(bào);2006年05期
,本文編號(hào):2252623
本文鏈接:http://www.sikaile.net/kejilunwen/wltx/2252623.html