文本無關(guān)的多說話人確認(rèn)研究
[Abstract]:In recent years, in the field of biometrics, speaker recognition has attracted more and more attention because of its unique advantages of security, economy and accuracy, and has gradually become an important way of identity verification in people's lives and work. It has broad market prospects. This paper begins with the system framework of speaker verification, and then introduces each part of the system in detail. Then, aiming at the speaker verification under complex conditions, it focuses on feature extraction, speaker segmentation, model building and other technologies. The main research work and innovation of this paper are as follows: 1. Based on the GMM-UBM speaker verification system as the baseline system of this paper, the related factors affecting the performance of the system are studied and analyzed, including Gaussian mixture, training speech length, scoring regularization technology, and verified by experiments. 2. In feature extraction, in order to improve the performance of speaker verification system in noisy environment, this paper proposes a method to improve the performance of the system. A multi-window spectral subtraction MFCC feature with strong noise robustness is proposed. The multi-window spectral subtraction MFCC is an improvement on the existing multi-window spectral MFCC (Multitaper MFCC), which combines the multi-window spectral estimation technique with the spectral subtraction method. The simulation results show that when the test speech contains additive noise, it is better than the multi-window spectral MFCC extraction algorithm. The speaker verification system using multi-window spectral subtraction MFCC achieves good results in EER with equal error rate and minDCF with minimum detection cost function. In order to improve the segmentation speed and accuracy at the same time, this paper first proposes a three-step segmentation strategy to implement the BIC speaker segmentation algorithm. The experimental results show that the improved segmentation algorithm has a great improvement in segmentation speed and accuracy. 4. In the aspect of model building, I-vector speaker modeling technology is explored and studied, especially the extraction process of I-vector and the construction of I-vector based speaker. The speaker recognition system is analyzed and compared with the speaker verification system based on GMM-UBM.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN912.34
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 賀前華;王志鋒;Alexander I Rudnicky;朱錚宇;李新超;;基于改進(jìn)PNCC特征和兩步區(qū)分性訓(xùn)練的錄音設(shè)備識(shí)別方法[J];電子學(xué)報(bào);2014年01期
2 黃奮;馬皓;鄧菁;;說話人識(shí)別技術(shù)在社保系統(tǒng)中的遠(yuǎn)程身份認(rèn)證應(yīng)用研究[J];電子技術(shù)與軟件工程;2014年02期
3 馬勇;鮑長春;;基于稀疏神經(jīng)網(wǎng)絡(luò)的說話人分割[J];北京工業(yè)大學(xué)學(xué)報(bào);2015年05期
4 李晉;郭武;戴禮榮;;聯(lián)合因子分析算法中基于信號(hào)子空間的空間變換方法[J];模式識(shí)別與人工智能;2013年08期
5 楊棟;周秀玲;郭平;;基于貝葉斯通用背景模型的圖像標(biāo)注[J];自動(dòng)化學(xué)報(bào);2013年10期
6 祝太鋒;;基于動(dòng)態(tài)反饋負(fù)載均衡算法的改進(jìn)[J];湖南農(nóng)機(jī);2013年11期
7 駱啟帆;章堅(jiān)武;吳震東;;一種基于MFCC與韻律特征的說話人確認(rèn)方法[J];杭州電子科技大學(xué)學(xué)報(bào);2013年05期
8 陳麗萍;王爾玉;戴禮榮;宋彥;;基于深層置信網(wǎng)絡(luò)的說話人信息提取方法[J];模式識(shí)別與人工智能;2013年12期
9 廖曉鋒;范修斌;姜青山;;基于協(xié)方差的高斯混合模型參數(shù)學(xué)習(xí)算法[J];計(jì)算機(jī)科學(xué);2013年S2期
10 郭心語;何曉豐;宮學(xué)慶;張蓉;周傲英;;一種基于曝光量和點(diǎn)擊率的用戶組優(yōu)化策略[J];計(jì)算機(jī)研究與發(fā)展;2013年S1期
相關(guān)會(huì)議論文 前6條
1 駱啟帆;章堅(jiān)武;吳震東;;一種基于MFCC與韻律特征的說話人確認(rèn)方法[A];浙江省電子學(xué)會(huì)2013學(xué)術(shù)年會(huì)論文集[C];2013年
2 尹聰;白靜;龔[,
本文編號(hào):2206917
本文鏈接:http://www.sikaile.net/kejilunwen/wltx/2206917.html