具有高可懂度的改進(jìn)的維納濾波的語(yǔ)音增強(qiáng)算法
發(fā)布時(shí)間:2018-05-25 18:16
本文選題:維納濾波 + 先驗(yàn)SNR; 參考:《計(jì)算機(jī)應(yīng)用與軟件》2014年11期
【摘要】:提出一種具有較高可懂度的基于維納濾波的語(yǔ)音增強(qiáng)算法。相比于其他語(yǔ)音增強(qiáng)算法,維納濾波法可以明顯提高語(yǔ)音質(zhì)量且含有較少的音樂(lè)噪聲,但是它和其他現(xiàn)有語(yǔ)音增強(qiáng)算法一樣,都無(wú)法有效提高語(yǔ)音可懂度。因?yàn)榫S納濾波法和其他現(xiàn)有算法都過(guò)多注重噪聲減少,卻忽略了SNR(信噪比)的估計(jì)誤差和不同的語(yǔ)音幅度譜畸變對(duì)可懂度有更重要的影響。為改進(jìn)這些缺點(diǎn),此研究依據(jù)于先驗(yàn)SNR和增益函數(shù)來(lái)判定SNR估計(jì)誤差和語(yǔ)音畸變區(qū)域,然后對(duì)先驗(yàn)SNR小于-10 d B區(qū)域的增益函數(shù)進(jìn)行修正,以及幅度譜畸變大于6.02 d B區(qū)域語(yǔ)音進(jìn)行限制。實(shí)驗(yàn)證明,該算法能有效提升增強(qiáng)后語(yǔ)音可懂度NCM(歸一化協(xié)方差方法)的評(píng)測(cè)值。
[Abstract]:A speech enhancement algorithm based on Wiener filter with high intelligibility is proposed. Compared with other speech enhancement algorithms, Wiener filter can significantly improve speech quality and contain less music noise, but it can not effectively improve speech intelligibility as other existing speech enhancement algorithms. Because Wiener filter and other existing algorithms pay too much attention to noise reduction, but ignore SNR estimation error and different speech amplitude spectrum distortion have more important influence on intelligibility. In order to improve these shortcomings, this study is based on the prior SNR and gain function to determine the SNR estimation error and the speech distortion region, and then modifies the gain function of the priori SNR less than -10 dB region. And the amplitude spectrum distortion is larger than 6.02 dB. Experimental results show that the proposed algorithm can effectively improve the NCM (normalized covariance method) of speech intelligibility after enhancement.
【作者單位】: 太原理工大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【基金】:山西省留學(xué)歸國(guó)人員科研項(xiàng)目(2011-027) 山西省留學(xué)人員科技活動(dòng)擇優(yōu)項(xiàng)目(2011-762)
【分類(lèi)號(hào)】:TN912.35
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 張亮;龔衛(wèi)國(guó);;一種改進(jìn)的維納濾波語(yǔ)音增強(qiáng)算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年26期
【共引文獻(xiàn)】
相關(guān)期刊論文 前5條
1 馬多佳;劉孟美;王e,
本文編號(hào):1934189
本文鏈接:http://www.sikaile.net/kejilunwen/wltx/1934189.html
最近更新
教材專著