天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

無(wú)線傳感器網(wǎng)絡(luò)故障診斷方法研究

發(fā)布時(shí)間:2018-05-24 23:27

  本文選題:無(wú)線傳感器網(wǎng)絡(luò) + 故障診斷; 參考:《上海電力學(xué)院》2015年碩士論文


【摘要】:隨著在各種監(jiān)測(cè)系統(tǒng)中越來(lái)越廣泛的應(yīng)用無(wú)線傳感器網(wǎng)絡(luò)(Wireless Sensor Networks,簡(jiǎn)稱WSN),對(duì)無(wú)線傳感器網(wǎng)絡(luò)的研究也愈發(fā)重要。無(wú)線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)部署之初起,便處于無(wú)人監(jiān)控和檢查的狀態(tài),傳感器網(wǎng)絡(luò)節(jié)點(diǎn)本身運(yùn)行的狀態(tài)我們無(wú)從得知,不可能對(duì)其進(jìn)行實(shí)時(shí)監(jiān)控或者經(jīng)常檢查,傳感器網(wǎng)絡(luò)一旦發(fā)生故障,就可能會(huì)對(duì)監(jiān)測(cè)產(chǎn)生影響。因此,準(zhǔn)確并且及時(shí)診斷出無(wú)線傳感器網(wǎng)絡(luò)的故障節(jié)點(diǎn),盡早排除故障,能提高無(wú)線傳感器網(wǎng)絡(luò)運(yùn)行的可靠性,保證應(yīng)用無(wú)線傳感器網(wǎng)絡(luò)的監(jiān)測(cè)系統(tǒng)完成預(yù)定的監(jiān)測(cè)任務(wù)。本文對(duì)無(wú)線傳感器網(wǎng)絡(luò)故障診斷方法進(jìn)行深入研究,研究?jī)?nèi)容有以下幾個(gè)方面:(1)研究了粗糙集理論,將無(wú)線傳感器網(wǎng)絡(luò)故障節(jié)點(diǎn)的故障類型與對(duì)應(yīng)故障特征屬性做成相應(yīng)的決策表,運(yùn)用粗糙集理論對(duì)無(wú)線傳感器網(wǎng)絡(luò)故障診斷決策表進(jìn)行約簡(jiǎn),并對(duì)基于粗糙集理論的WSN故障診斷方法進(jìn)行了仿真實(shí)驗(yàn),結(jié)果證明了該方法的優(yōu)越性,但同時(shí)也反應(yīng)出基于粗糙集理論的WSN故障診斷方法的不足之處。(2)研究了基于BP算法的小波神經(jīng)網(wǎng)絡(luò),針對(duì)其由于采用梯度算法導(dǎo)致的進(jìn)化速度緩慢且目標(biāo)函數(shù)容易陷入局部極小的問(wèn)題,提出了在基于BP算法的小波神經(jīng)網(wǎng)絡(luò)中采用增加動(dòng)量項(xiàng)和學(xué)習(xí)率自適應(yīng)調(diào)整這種方法來(lái)對(duì)小波神經(jīng)網(wǎng)絡(luò)進(jìn)行改進(jìn),通過(guò)訓(xùn)練實(shí)驗(yàn)證明了這種改進(jìn)措施的可行性。最后,在WSN的故障診斷中應(yīng)用這種改進(jìn)的小波神經(jīng)網(wǎng)絡(luò)算法進(jìn)行實(shí)驗(yàn),通過(guò)實(shí)驗(yàn)不僅驗(yàn)證了改進(jìn)的小波神經(jīng)網(wǎng)絡(luò)算法在WSN故障診斷中的可行性,更加體現(xiàn)出其良好的容錯(cuò)性能。(3)針對(duì)基于粗糙集理論的WSN故障診斷方法的容錯(cuò)能力不足和小波神經(jīng)網(wǎng)絡(luò)不能識(shí)別多余數(shù)據(jù)知識(shí)的缺點(diǎn),本文將粗糙集理論與改進(jìn)的小波神經(jīng)網(wǎng)絡(luò)集成來(lái)解決這個(gè)問(wèn)題,并在WSN節(jié)點(diǎn)故障診斷仿真實(shí)驗(yàn)上對(duì)兩者集成的RS-IWNN故障診斷算法進(jìn)行仿真。與基于粗糙集理論的WSN故障診斷方法的實(shí)驗(yàn)結(jié)果比較,證明了RS-IWNN故障診斷算法的優(yōu)越性。(4)針對(duì)DFD算法存在的能耗高及診斷為“正!钡臈l件苛刻這兩個(gè)問(wèn)題,對(duì)運(yùn)行于CTP協(xié)議下的無(wú)線傳感器網(wǎng)絡(luò)所運(yùn)用的DFD故障診斷算法進(jìn)行改進(jìn),以減少故障診斷所消耗的能量,同時(shí)提高故障診斷正確率。通過(guò)仿真實(shí)驗(yàn)證明了該改進(jìn)的故障診斷算法取得的良好效果。(5)針對(duì)目前的研究大多數(shù)集中于對(duì)WSN故障診斷算法的研究上,而忽略了對(duì)故障診斷系統(tǒng)設(shè)計(jì)的問(wèn)題,提出一種WSN故障診斷系統(tǒng)的設(shè)計(jì),并對(duì)設(shè)計(jì)內(nèi)容進(jìn)行了介紹。
[Abstract]:With the more and more extensive application of wireless sensor networks (WSNs) in various monitoring systems, the research on wireless sensor networks (WSNs) is becoming more and more important. Since the beginning of the deployment of wireless sensor network nodes, they have been in a state of unattended monitoring and inspection. We have no way to know the state of the nodes running in the sensor networks themselves, and it is impossible to monitor them in real time or to check them frequently. Sensor networks may have an impact on monitoring once they fail. Therefore, accurate and timely diagnosis of wireless sensor network fault nodes, early troubleshooting, can improve the reliability of the operation of wireless sensor networks, ensure the application of wireless sensor networks monitoring system to complete the scheduled monitoring tasks. In this paper, the methods of fault diagnosis in wireless sensor networks are deeply studied. The research contents are as follows: 1) the rough set theory is studied. The fault types of the fault nodes and the corresponding fault feature attributes of wireless sensor networks are made into the corresponding decision tables, and the rough set theory is used to reduce the fault diagnosis decision tables of wireless sensor networks. The simulation results of WSN fault diagnosis method based on rough set theory prove the superiority of the method. But it also reflects the deficiency of WSN fault diagnosis method based on rough set theory.) the wavelet neural network based on BP algorithm is studied. In view of the slow evolution speed caused by using gradient algorithm and the problem that the objective function is prone to fall into local minima, An improved wavelet neural network based on BP algorithm is proposed, which is based on the adaptive adjustment of momentum and learning rate. The feasibility of the improved method is proved by the training experiment. Finally, the improved wavelet neural network algorithm is applied to the fault diagnosis of WSN. The experiment not only verifies the feasibility of the improved wavelet neural network algorithm in WSN fault diagnosis. The fault tolerance ability of WSN fault diagnosis method based on rough set theory and the shortcoming of wavelet neural network can not recognize redundant data knowledge can be realized. In this paper, the rough set theory is integrated with the improved wavelet neural network to solve this problem, and the integrated RS-IWNN fault diagnosis algorithm is simulated in the WSN node fault diagnosis simulation experiment. Compared with the experimental results of WSN fault diagnosis method based on rough set theory, it is proved that the superiority of RS-IWNN fault diagnosis algorithm is to solve the two problems of high energy consumption and "normal" condition of DFD algorithm. In order to reduce the energy consumption of fault diagnosis and improve the accuracy of fault diagnosis, the DFD fault diagnosis algorithm used in wireless sensor networks running under CTP protocol is improved. Simulation results show that the improved fault diagnosis algorithm has a good effect. Aiming at the current research, most of the researches focus on the WSN fault diagnosis algorithm, but the design of the fault diagnosis system is ignored. The design of a WSN fault diagnosis system is presented, and the design content is introduced.
【學(xué)位授予單位】:上海電力學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN929.5;TP212.9

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 劉仁云,于繁華,葉欣;改進(jìn)的小波神經(jīng)網(wǎng)絡(luò)及應(yīng)用[J];長(zhǎng)春師范學(xué)院學(xué)報(bào);2004年10期

2 王建芳;李偉華;;基于擴(kuò)展T-S模型的PSO神經(jīng)網(wǎng)絡(luò)在故障診斷中的應(yīng)用[J];計(jì)算機(jī)科學(xué);2009年09期

3 蔡用;胡紹華;胡立群;楊麗;楊保華;;關(guān)于粗糙集理論的一些探討[J];科技廣場(chǎng);2008年12期

4 曹云峰;王耀才;王軍威;;基于粗糙集的容錯(cuò)神經(jīng)網(wǎng)絡(luò)故障診斷系統(tǒng)[J];計(jì)算機(jī)工程與設(shè)計(jì);2006年04期

5 胡耀垓,李偉,胡繼明;一種改進(jìn)激活函數(shù)的人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2004年10期

6 陳健;楊志義;王敏;;無(wú)線傳感器網(wǎng)絡(luò)數(shù)據(jù)匯聚協(xié)議CTP的仿真與研究[J];現(xiàn)代電子技術(shù);2011年06期

7 李宏;謝政;陳建二;李熙熙;向遙;;一種無(wú)線傳感器網(wǎng)絡(luò)分布式加權(quán)容錯(cuò)檢測(cè)算法?[J];系統(tǒng)仿真學(xué)報(bào);2008年14期

相關(guān)博士學(xué)位論文 前2條

1 李翠玲;粗糙集理論研究及其在虛擬裝配系統(tǒng)中的應(yīng)用[D];同濟(jì)大學(xué);2007年

2 金瑜;基于小波神經(jīng)網(wǎng)絡(luò)的模擬電路故障診斷方法研究[D];電子科技大學(xué);2008年

相關(guān)碩士學(xué)位論文 前1條

1 徐洲;基于粗糙集的供應(yīng)鏈企業(yè)之間知識(shí)流動(dòng)影響要素識(shí)別研究[D];昆明理工大學(xué);2010年

,

本文編號(hào):1931061

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/kejilunwen/wltx/1931061.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a3179***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com